Advertisement

Annali di Matematica Pura ed Applicata

, Volume 172, Issue 1, pp 379–394 | Cite as

Schatten class composition operators on weighted Bergman spaces of bounded symmetric domains

  • Song-Ying Li
  • Bernard Russo
Article

Summary

We obtain trace ideal criteria for 0<p<∞ for holomorphic composition operators acting on the weighted Bergman spacesA α 2 (Ω) of a Bounded symmetric diomain Ω in ℂn.

Keywords

Composition Operator Bergman Space Symmetric Domain Class Composition Ideal Criterion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    F. Beatrous -S.-Y. Li,Trace ideal criteria for operators of Hankel type, Ill. J. Math.,39 (1995), pp. 723–754.Google Scholar
  2. [2]
    D. Békollé -C. A. Berger -L. A. Coburn -K. Zhu,BMO in the Bergman metric on bounded symmetric domains, J. Funct. Anal.,93 (1990), pp. 310–350.Google Scholar
  3. [3]
    D. Békollé -A. Bonami,Estimates for the Bergman and Szegö projections in two symmetric domains of ℂ n, Colloq. Math.,68 (1995), pp. 81–100.Google Scholar
  4. [4]
    C. A. Berger -L. A. Coburn -K. Zhu,Function theory on Cartan domains and the Berezin-Toeplitz calculus, Amer. J. Math.,110 (1988), pp. 921–953.Google Scholar
  5. [5]
    A. Cima -W. Wogen,Unbounded composition operators on H 2(B n), Proc. Amer. Math. Soc.,99 (1987), pp. 477–483.Google Scholar
  6. [6]
    R, Coifman -R. Rochberg,Representation theorems for holomorphic and harmonic functions in L p, Astérique,77 (1980), pp. 11–66.Google Scholar
  7. [7]
    C. C.Cowen,Composition operators on Hilbert spaces of analytic functions; A status report, in:Proc. Sympos. Pure Math. (W. B. Arveson - R. G. Douglas, Eds.),51 (1990), pp. 131–145.Google Scholar
  8. [8]
    J. Faraut -A. Koranyi,Function spaces and reproducing kernels on bounded symmetric domains, J. Funct. Anal.,88 (1990), pp. 64–89.Google Scholar
  9. [9]
    P. Jafari,Composition operators in Bergman spaces on bounded symmetric domains, Contemp. Math.,137 (1992), pp. 277–290.Google Scholar
  10. [10]
    S. G.Krantz,Function Theory of Several Complex Variables, Wadsworth & Brooks, 2nd edition (1992).Google Scholar
  11. [11]
    S.-Y. Li,Trace ideal criteria for composition operators on Bergman spaces, Amer. J. Math.,117 (1995), pp. 1299–1323.Google Scholar
  12. [12]
    S.-Y. Li -B. Russo,On compactness of composition operators in Hardy spaces of several variables, Proc Amer. Math. Soc.,123 (1995), pp. 161–171.Google Scholar
  13. [13]
    D. H. Luecking,Trace ideal criteria for Toeplitz operators, J. Funct. Anal.,73 (1987), pp. 345–368.Google Scholar
  14. [14]
    D. Luecking -K. Zhu,Composition operators belonging to the Scatten ideals, Amer. J. Math.,114 (1992), pp. 1127–1145.Google Scholar
  15. [15]
    B. Maccluer,Spectra of compact composition operators on H p(B N), Analysis,4 (1984), pp. 87–103.Google Scholar
  16. [16]
    B. Maccluer -J. H. Shapiro,Angular derivatives and compact composition operators on Hardy and Bergman spaces, Can. J. Math.,38 (1986), pp. 878–906.Google Scholar
  17. [17]
    M. M. Peloso,Hankel operators on weighted Bergman spaces on strongly pseudoconvex domains, Ill. J. Math.,38 (1994), pp. 223–249.Google Scholar
  18. [18]
    J. H. Shapiro,The essential norm of a composition operator, Ann. Math.,125 (1987), pp. 375–404.Google Scholar
  19. [19]
    J. H. Shapiro -P. D. Taylor,Compact nuclear and Hilbert-Schmidt composition operators on H 2, Indiana Univ. Math. J.,23 (1973), pp. 471–496.Google Scholar
  20. [20]
    W.Wogen,Composition operators acting on spaces of holomorphic functions on domains in ℂn, in:Proc. Sympos. Pure Math. (W. B. Arveson - R. G. Douglas, Eds.),51 (1990), pp. 361–366.Google Scholar
  21. [21]
    K. Zhu,Positive Toeplitz operators on weighted Bergman spaces of bounded symmetric domains, J. Operator Theory,20 (1988), pp. 329–357.Google Scholar
  22. [22]
    K. Zhu,Operator Theory in Function Spaces, M. Dekker, New York (1990).Google Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata 1997

Authors and Affiliations

  • Song-Ying Li
    • 1
  • Bernard Russo
    • 2
  1. 1.Department of MathematicsUniversity of CaliforniaIrvineUSA
  2. 2.Department of MathematicsUniversity of CaliforniaIrvineUSA

Personalised recommendations