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Schatten Class Composition Operators 
on Weighted Bergman Spaces 

of  Bounded Symmetric Domains (*). 

SONG-YING LI - BERNARD RUSSO 

Summary. - We obtain trace ideal criteria for 0 < p < ~ for holomorphic composition opera- 
tors acting on the weighted Bergman spaces A~(Q) of a bounded symmetric domain ~2 
i n C  ~. 

1. - Introduction. 

In this paper we obtain trace ideal criteria for all possible values of p for composi- 
tion operators acting on the weighted Bergman spaces A~ (tg) of a bounded symmetric 
domain Q in C ~. For the unweighted Bergman space of a bounded strongly pseudo- 
convex domains in C ~ with smooth boundary, this has been done recently by S.-Y. 
LI [11]. 

For the unit disc in C, D. LUECKING [13] initiated a systematic study of trace ideal 
criteria (0 < p < ~ ) for Toeplitz operators with measures as symbols on some stan- 
dard Hilbert spaces of holomorphic functions. His condition is expressed in terms of a 
dyadic hyperbolic decomposition of the unit disc. By an appropriate choice of measure 
and weight, his result applies to composition operators on the Hardy space and the 
weighted Bergman spaces. 

For values of p i> 1, ZHU[21] extended Luecking's result to the weighted 
Bergman spaces of a bounded symmetric domain. Although this special case of our 
main result can be derived from Zhu's work, our methods are different, being based 
on ideas from [11] and [13], and out result covers all possible values of p. 

In another direction, for the Hardy space H 2 and the weighted Bergman (Hilbert) 
spaces of the unit disc, and for 0 < p < ~ ,  LUECKING and ZHU [14] characterized com- 
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position operators belonging to the Schatten class in terms of the Nevanlinna count- 
ing function, Shapiro's criteria for compactness [18] appearing as a limiting case. 

Earlier work on holomorphic composition operators in one and several variables 
was concerned primarily with compactness. Compactness on the Hardy and Bergman 
spaces of the unit disc have been studied extensively in the past two decades ([19], 
[16], [18], [7]), and boundedness ([5], [20]) and compactness ([15], [16], [20]) have been 
studied in the context of the unit ball Bn in C n , as well as for bounded symmetric do- 
mains [21], [9], and strongly pseudoconvex domains [12]. 

We now introduce some notation and state our main result. 
Let ~9 be a bounded symmetric domain in C ~ . Let L2(t~) be t-he usual Lebesgue 

space over t9 with respect to the Lebesgue volume measure dv of R 2~. Let A2(t~) be 
the holomorphic subspace of L2(~9) and let P: L2(tg)--~A2(t~) be the Bergman pro- 
jection with Bergman kernel K(z, w). It is well-know that K can be written as 
K(z, w)=  h(z, ~ ) - Y  for some positive integer N = N~ and polynomial h(z, w ) =  
= ha(z, w) in both z and w. 

By[8], if we let 1/2 >I a~ = N ~  1 > 0 then Ca = IK(z,  z)~dv(z) < ~ for all real 

numbers a < an .  Then we may define the weighted normalized measures dv ~ on ~9 as 
follows: dv ~ ( z ) = Cj  1K( z, z) ~ dv(z ). We consider the Lebesgue space L 2 (~9, dv a) over 

with respect to the normalized weighted measure dv s , and let A~ (Q) be its holo- 
morphic subspace. Let Pa: L2( Q, dye)--~A2a(t~) be the orthogonal projection with 
reproducing kernel denoted K~(z, w). It is known that KS(z, w) = K(z, w) 1 - " .  For 
any holomorphic mapping cp: t) -o ~9, we define the Berezin transform of ~ to be the 
function B~ defined by 

n ~  (z)2 = f Ka(z' z) -1 IUa(z, w)[2dv~(w) -~- Ka(z, z) -1 f ]KS(z, ~l)(W))12dva(w). 
Q .Q 

Here v~, or dv2 is the pull-back measure defined as follows: for each Borel set E r Q, 
we let v~(E) = va(~- l (E) ) .  

Let fl(z, w) be the Bergman metric on ~.  For any z e t9 and r > 0 we let E(z, r) = 
= {w e ~: fl(z, w) < r}. Then we let b~ (z, r) = v~ (E(z, r))lE(z, r) l ~- 1, I E I = I dr. 

Let cp: Y2 --> t9 be a holomorphic mapping. The composition operator of ~ is th E op- 
erator C~u(z)= u(~(z)) for any function u on ~9. Let d~(z)= C,K"(z,  z )dvS(z)= 
= K(z, z)dv(z). We denote the Schatten p-class of compact operators on the Hilbert 
space H by Sp (H), 0 < p < ~ .  We propose to prove 

THEOREM 1.1. - Let Q be a bounded symmetric domain in C ~. Let q~: Q ---> ~ be a 
holomorphic mapping. Then for each a < a ~, 

(i) i f  0 < p < ~ ,  then C~o ~ S2p(A~ (t~)) i f  and only i f  b~(z, r ) e  LP(~ ,  d2) for 
all (or some) O < r < ~ ; 

(ii) i f  2 ( 1 - a ~ ) / ( 1 - a ) < p <  ~ ,  then C~eSp(A~(t~)) i f  and only i f  
B~ e L p (Q, d;t). 
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Before going any further, let us make a remark on the number 2(1 - a~) / (1  - a) 
for the case Q = B~, the unit ball in C ~. Since aB~ = 1/(n + 1), 2(1 - aa)/(1 - a) = 
= 2 n / ( n + l ) ( 1 - a ) .  In particular, when a = 0 ,  we have 2 ( 1 - a ~ ) / ( 1 - a ) =  
= 2n/(n + 1). Note also that  ff ~ is the polydisk, a a  = 1/2. 

We refer to [2], [4], and [21] for the following (asymptotic) properties of the 
Bergman kernel and metric in bounded symmetric domains. These properties will be 
used repeatedly in the estimates below in Sections 3 and 4. 

�9 ([4, Proposition 2]). I f  cf a denotes the unique automorphism of $2 satisfying 
~ ( a )  = 0 and 9aoq~a = Id, then for the complex Jacobian 

I(Jccfla)(Z)l = Ika(z)l, 

where k~(z) = K(z, a)/K(a, a) 1/2, and IJccf~(O)l = K(a, a) -1/2. 

�9 ([4, p. 927]). K(0, w) = K(z, O) = 1, and K(z, w) ~ 0 for all z, w e tg. 

�9 ([4, Lemma 6]). For  a, b E t9 with fl(a, b) <<. R, and r, s > 0, there is a constant 
C depending on R, r, and s such that  

0 < 6 - 1 ~  < IE(a,r) l lE(b,s)]-~<<.C< 

�9 ([4, Lemma 8]). For  r > 0 there is a constant C depending on r such that  
Yz e E(a, r), 

(1) 0 < C -1 <~ IK(z, a)l 2 IE(a, r) I K(a, a) -1 ~ C < 

�9 ([2, Lemmas 5 and 6]). For  fLxed r > 0, there is a sequence {wj} in Q such 
that  

(2) 

and 

[J E(wj, r) = t~ 
j = l  

(i) There is a positive integer Co such that, for any z ~ ~9, z belongs to at most Co 
of the sets E(wj, 2r), where Co is independent of r. 

(ii) I f  m is any positive Borel measure on ~ and F i> 0, 

f Fdm<<'Cof Fdm" 
2"=1 

E(wj, r) if2 

�9 ([21, Lemma 5]). For  r > 0 there is a constant C depending on r such that  for 
p ~ [ 1, ~ ), a ~ • and f holomorphic, 

if(a)lp <<. CIE(a, r) I-1 ~ ]flz)lPdv(z). 
E(a, r) 

�9 ([21, Lemma 6]). For  r > 0 there is a constant C depending on r such that  for 
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any positive Borel measure /~  on t~ and a E ~9, 

r))q <~ CIE(a, r) I-1 ~ tt(E(z, r))qdv(z) #(E(a, 
E(a, r) 

We note the following consequences of eq. (1): 

(3) K(z, z) -- IE(z, r )1 -1 ,  

(4) 

(5) 

(0 < q ~< 1). 

K(z, w) -- K(z, z), (w e E(z, r)) , 

K(z, z) ~- ]E(a, r) l -1 , (z e E(a, r)). 

2.  - P r e l i m i n a r i e s .  

In this section, we shall prove some preliminary results we shall use later. Fi rs t  
let us recall a lemma which can be found in many places, we refer  to [1] and references 

therein. 
Le t  K~(w) = Ka(w, z), k~(w) = Ka(z, z)-l/2K~(w). I t  is clear that  k~ is a unit 

vector in A~ (tg). We denote the inner product  in L 2 (~,  dv ~) by <., �9 >,. 

LEMMA 2.1. - Let T be a positive, compact operator on L 2 (Q, dv a) with range con- 
taine in A~ ( Q ). Then 

t race T = I (TKa,  K~)adv~(z)= I(Tk~,  kg}~K~(z, z)dv(z). 

Moreover, for any 1 <<. p < ~ , 

I (Tka,  k ; ~ K ~ ( z ,  z)dv"(z) <~ I<TPk:, k;>,Ka(z,  z)dva(z) = t race TP ; 

and~ for any 0 < p < 1, 

I (Tk : ,  k ;EKa( z ,  z)dva(z) >I I<TPk:, k2>Ka(z, z)dv~(z) = t r a c e T P .  

We next s tar t  proving some identities. 

LEMMA 2.2. - Let t~, q~, Cr B~ be as defined above. Then 

B$ (z) 2 = <C~ C~k:, k: >o , 

and for O < p < co, 

I IB$(z)[pd,~(z) = I<C* C~k a, k~ /2dA(z ) .  
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PROOF. 

<C~Cck~, k:}a = (Cr (K~), Cr z) -1 = 

= f K ~  oCf(w) K~ ocf(w) dva(w)Ka(z,  z) -1 = 

"= f Ka(W) Ka(W) dv~(w)Ka(z, z)-l-~f IKa(z, w) 12dv~(w)Ka(z, z)-l=Bg(z) 2. �9 

As a consequence of Lemmas 2.1 and 2.2, we have 

COROLLARY 2 . 3 .  - Let t? be a bounded symmetric domain in C n and let q~: t? ---) f2 
be a holomorphic map. Then 

(a) i f  2 <<. p < ~ and Cr ~ Sp (A~ (~)), then B~ e L p (d)~); 

(b) i f  O <p  <~2 and B ~ L P ( A ,  d)d, then Cr 

PROOF. - If p/2 i> 1, then by Lemmas 2.1 and 2.2, 

= trace ((C; C~)P/2) >>. I(C~ C~k;, k;  ),d2(2) = [ ,B;(z) ,"  d2(z), 

so (a) follows. 
If p/2 <~ 1, applying Lemmas 2.1 and 2.2 again, we have 

P 2 f IBg(z)lPd,t(z) = I<C~C~k~, k:~/2d2(z) >I trace((C~C~F/~) = Hc~Ils~(Ao) 

and (b) follows. �9 

Next we shall connect the operator C~ Cr to a Toeplitz operator associated to a 
symbol which is our pull-back measure vg. For any measure tt on f2 define the opera- 
tor Tz by the formula 

= [ f (w)K~(z ,  w)dtt(w) Tz( f ) (x )  
D 

for f~A~(~9) and z ~ tg. 

LEMMA 2.4. - Let t~ be a bounded symmetric domain in C n. Let q~: t? --~ ~3 be a 
holomorphic map such that C~ is bounded on A~(f2). With the notation above, 
C~ C~ = T~r 

PROOF. - Let f e  A~ (f2). Then 

C~Cr = (C2C~(f) ,  K~)a = (C~(f) ,  Cr (Ka)}~ = 

= [f(q~(w)) g : (~ (w) )  dv" (w)= [ f ( w ) g a ( z ,  w) dvg (w) T ~ ( f ) ( z ) .  
, J  

Thus C~ C~ ( f )  = T~o(~)(f) and the proof is complete. �9 
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COROLLARY 2.5. - Let 0 < p < ~ , let t~ be a bounded symmetric domain in C '~ , and 
let q~: ~---)~2 be a holomorphie map. Then C ~ S p ( A 2 ( ~ ) )  i f  and only i f  

S /2 (A 2 

Combining Lemma 2.2, Corollaries 2.3 and 2.5, and [21, Theorem C], we ob- 
tain 

COROLLARY 2.6. - Let ~ be a bounded symmetric domain in C n , let cp: Q ~ Q be a 
holomorphic map, and let 2 <. p <<. ~ .  The following are equivalent: 

�9 C~Sp(A2a(~ ) ) ,  

�9 B ~ E L P ( t ~ ,  d)~), 

�9 b~ e L p/2 (t~, d)~). 

3. - Equivalence of  two conditions.  

In this section we shall prove a par t  of our main theorem. F o r  p I> 2, the following 
theorem was proved by  Znv  ([21]; see Corollary 2.6 above). 

THEOREM 3.1. - Let ~ be a bounded symmetric domain in C ~ and a < a ~. Let 
2(1 - a ~ ) / ( 1  - a)  < p < r162 Then B$ ~ LP ( ~ ,  d,~ ) i f  and only i f  b~ ~ LP/2 ( Q, d,~ ). 

PROOF. - Suppose first that  B$(z)  e L P ( ~ , d ; t ) .  We shall show 
b$(z) e LP/2(t~). By Lemma 2.2, we have 

B$(z)  2 = I Ka(z ,  z) -1 [Ka(z, w)[2dv$(w) >i 
t~ 

that  

>I I K"(z' z)-I [K~(z' w)12dv~(w) >~ C~-IK~(z' z) I dv~(w): by eq. (4) 
E(z, r) E(z, r) 

= Cj~K~(z ,  z )v$(E(z ,  r)) >1 Cr ~ IE(z, r)l -I+~ v~ "(E(z,  r)) = 

2 Therefore  IIb~ IILp/2(a, ~) <~ C~ IIB~ IILP(a, ~). 

by eq. (3) 

= C j l b g ( z ) .  

Next  we shall prove the converse. To achieve this goal, we need the following 
Forelli-Rudin type inequality from [8]. The notation we use is not exactly the same as 
it is in [8]. For  a < a ~ ,  we let 

I , ,c(z)  = ~K(w,  w) a IK(z, w)l 1 -"+~dv(w).  
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Let  rn be the rank of Q, and K(z, w) = h(z, ~))-N I t  is known that  if Q is an irre- 
ducible bounded symmetric domain, then N = a(rn - 1) + b § 2 where a, b are non- 
negative integers defined in [8]. Then [8, Theorem 4.1] implies the following proposi- 
tion. 

P R O P O S I T I O N  3.2. - Let a < an .  Then 

(i) I f  c < - a ( r - 1 ) / 2 N ,  then l~,~(z) is bounded. 

(ii) I f  c > a(r - a ) / 2 N  then Io,~ (z) ~- K(z, z) ~, z e ~9. 

We now come back to the proof of Theorem 3.1. We may assume, by Corollary 2.6 
that  p ~ 2 .  Since ( 1 - a e ) / ( 1 - a ) < p / 2 < ~ l ,  we have 1 - p ( 1 - a ) / 2 < a n  and 
therefore I K(z, z) -p/2(1 - ~) + 1 dv(z) < ~ .  Moreover, by Proposition 3.2, 

n 

f Ka(Z ,  Z) -p/2 [Ka(z ,  w ) [PK(z ,  z ) d v ( z )  -~ f K(z ,  z). 1-p(1-a,/2 IS ( z ,  w ) lp (1 -a )dv ( z )  -~ 

n n 

= f K ( z ,  z )  ~ - p(1 - ~)/2 i K ( z  ' w )  l l  - (1 - p ( 1  - a)/2) +p(1 - . ) / 2 d v ( z  ) = 

n 

= 1 ( 1  _ p ( 1  - . ) / 2 ) ,  p (1  - . ) / 2  ( w )  = K ( w ,  w )  p(1 - ~)/2 

since 

c = p(1 - a)/2  > [2(1 - a n ) / ( 1  - a)](1 - a)/2 = 

= 1 - an  = 1 - 1 IN  > 1/2 - (b + 2 ) /2N = a(rn - 1) /2N.  

Thus, choosing {zj} so that  s = U E(zi ,  r), 
i = 1  

IK~176  dv (w) 
6 

<<- K~ z) -1 IK~(z, w) lZdv$(w)  d)~(z) <~ 
i 1 

E(z~, r) 

= C ~ Ka(z ,  z) -1 IK"(z ,  w)12dvg(w) d~(z) <~ 
i=1 . 

n E(z~ ) 

a v  

<~ Ci~=l.= f K~(z,z) -p/~ ]K%z, wi)lPv$(E(zi, r))P/2K(z,z) dv(z) ( v i e  E(zi,r) depends on z)~< 
n 
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<<. C ~ K"(w~, w~)-P/2K"(w~, w~)Pvg(E(z~, r))P/~ = C ~ K~(w~, w~)P/2vg(E(z~r))P/2<~ 
i = 1  i = 1  

i=1 
E(zi, r) 

[vg (E(z, r)) K(z, z) 1 - ~ ]p/2 K(z, z) dv(z) (by subharmonicity) ~< 

i=1 
E(z~, r) 

(bg (z)) p/2 d~(z) <~ Co C I (bg (z)) p/2 d~(z) 
t~ 

B ~ ~ ~/2 and combining the above two steps, the Therefore II r ~ Cp, rllb~ Lp/2(t~ d~)' 

proof of Theorem 3.1 is complete. [] 

Note that the first implication in the preceding proof may be obtained from Corol- 
lary 2.3 and Theorem 4.1 in the next section. Here we have given a direct 
proof. 

4. - P r o o f  o f  m a i n  t h e o r e m .  

In this section, we shall complete the proof of our main theorem, that is, the case 
0 < p < 2. By Corollary 2.5 and Theorem 3.1, it suffices to prove the following 
theorem. 

THEOREM 4.1. - Let t'2 be a bounded symmetric domain in C ~ . Let q~: ~2 --, ~2 be a 
holomorphic mapping. Then for  each a < a~,  i f  0 < p <<. 2, then Cr e S2p(A~(D)) i f  
and only i f  b~(z, r) eLP( tg ,  d,~) for all (or some) 0 < r < oo. 

We shall break the proof of Theorem 4.1 into several lemmas. 

LEMMA 4.2. - Let ~ be a bounded symmetric domain in C ~ and cp: ~ ~ ~ be a 
holomorphic mapping. I f  0 < p < 1, a < a~ and b~ eLP(Y2, d;ta), then T = 
= Tv$ e Sp (A~ (Q)). 

PROOF. - Since 0 < p ~< 2, it suffices to prove (cf. [13, Lemma 5]) there is an or- 
thonormal basis { ~ }~= 1 of A~ (t~) such that ~ [ (T~ ~, ~ k} I p < ~-  Actually, we shall 

n~ k 

prove this for an operator L* TL on an abstract Hilbert space, and appropriate L; 
then it will follow that T e Sp(A~(t2)). 

Z o~ Let { k}k=l be a sequence of points in ~9, and let 

bk(z) = Ka(zk,  Zk)-M-1/2 Ka(Z, Zk) 1 + M 

where M is a positive number to be determined later. 
We interrupt the proof to state a proposition which is a comsequence of the proof 

of Theorems 1 and 2 in [6], and explains the significance of bk(z). 
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PROPOSITION 4.3. - There is a sequence of points {zk}~: 1r ~ so that f � 9  A~(Q) if 
and only i f  there is a sequence of numbers {)~k}~ �9 12 such that 

f(z)  = ~ k b z ( z ) ,  z �9 ~9 
k 

and 

Ilfl[4~ = [l{)~k }lit ~. 

The authors wish to thank R. ROCHBERG for showing them how Proposition 4.3 can 
be proved using Proposition 3.2 and the following two hypotheses. 

(H1) The operator T., M defined as: 

T~,Mf(z) = I IKa(z' W)II+MK~(w' w)-Mf(w)dv~(w)' 
Q 

is bounded on L~(tg). 

(H2) bk(z)~-bk(zi) o n  (Ei, r). 

(H1) follows from Proposition 3.2 for sufficiently large M and Schur's lemma; and 
(H2) is true on any bounded symmetric domain by (4) (see [21]). We omit the details 
here. 

In connection with Proposition 3.2, we should point out that whether the Forelli- 
Rudin type inequality holds or not when - a(r~ - 1)/2N < c < a(r~ - 1)/2N is not 
completely known. Our definition of bk with large M avoids this uncertainty. In a gen- 
eral bounded symmetric domain, the Bergman projection may not be bounded on L p 
for all 1 < p < ~ (for example, see [3]). 

We now continue with the proof of Lemma 4.2 by calculating the following 
quantity: 

n, k 
]b~(z)l Ibk(z)l dv~(z)) p 

, r)) ] b n (z i) bk (zi)l)P <" 

<<. C ~, E (v2 (E(zi, r)) K(zi, zi ))P (K(zi, zi)- 1 i b n (Zi) bk (Z i )1 )P "~ 
n, k 

Since E(v~(E(zi, r))Ka(z~,zi))P<~Cllb~ll~p(~.d~), we would like to prove 
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(K"(z~, zi)-~lb~(zi)b~(zi)l) ~ <~ C, for all i = 1, 2, 3, .... However 
n~ k 

2 (K"(zi ,  zi) -11b~(zi)b~(zi)[) p = K~(zi ,  z~) -p [b~(zi)i~ = 
u, k 

= K~(zi ,  zi) -p K~(zk, Zk)-P/2-Mp IKa(zi, zk)l p(I+M) 

(J ~ CK~(zi,  z~)-P g~( z ,  z) -p/2 - ~ + ~  IK~(z~, z)l~(~+~)dv"(z) 

< CK(z~, z~)-P(g~(z~, z~) - ~ / ~ - ~  Ig~(z~, z~)l~(~+~)) ~ = 

<. 

= CK(zi, zi) -p ( I K ~ (zi, z~) ]p/2))2 = CM 

if we choose M such that Mp > 1. Thus we have shown that 

~, I(Tb~, bk)l p <~ CIIb$1]~ 
~,  k 

Now we let H be any Hilbert space with {e~} as its orthonormal basis. Let L: H --, 

~A~(D)bedef inedas fo l lows :L  k 1 ck ek = k = l ck bk ( z )" It  is clear fr~ Pr~176176 4"3 

that L: H ~ A~ (D) is a bounded and onto linear map. Since L is onto, it has a bounded 
right inverse, that is, there is a bounded linear operator R: A~(D)-~  H such that 
L R = I :  A~(D)---~A~(f2). For our T: A ~ ( Q ) ~ A ~ ( Q ) ,  we have T = ( L R ) * T L R =  
= R ' L *  TLR: A ~ ( D ) ~ A ~ ( Q ) .  Since L * T L :  H ~ H  is a bounded linear operator 
and 

~, I(L * TL(ek), e~}l p = k~.~ I(TLek, L(e~)}l p = k~.,~ I(Tbk, bn}l p <~ CNb$ll~,(~,d~) , 
~ n ~ 

it follows that L* TL �9 Sp (H) and IlL* TL IlSp(A~) <~ CII b$ ]l~p(~, 44). Since R *: H -~ 
-- ,A~(~)  and L: H---~A~(Q) are bounded linear operators, we have T =  

a P  b a p  = R * L * T L R  �9 Sp(A~)(Q) and IITNs,(A2) < [IR*lIHnllCHbr <<- VII cHLP(a, dX). 
Therefore, the proof of Lemma 4.2 is complete. I 

The proof of Theorem 4.1 is now reduced to proving the following lemma. The idea 
of the proof is similar to one in [13]. 

LEMMA 4.4. - Let t~ be a bounded symmetric domain in C n . Let a < aa  and let 
0 < p ~ < l .  I f  of: Q--->~ is a holomorphic map such that Tv~eSp(A~(~) ) ,  then 
b ~ e L P ( t~ , d;O. 

PROOF. - Again let {zk}~= 1 be a sequence satisfying the density and separation 
c~ 

properties of Coifman and Rochberg, that is, fl(zj, z~) > r and t~ = [J E(zj,  r). 
j = l  
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c~ 
For  R>>r ,  partition this sequence { z j } ~  = U {z~)}[=~ so that 

k = l  

fl(z(~) , z} ~) ) > R,  j r l, 1 <~ k <~ CR. 

As before, define operators L and L~ from a Hflbert  space H into A~ by 

L c~eg = ~ cgb~ (z), and L~ cget = ~ c~b[ ~) (z), 

where 

b} k) (z) = K ~ (z[ k) , z} ~ ) ) - i  - 1/2 K a (z, Z/(~)) 1 + M and bg (z) = K ~ (zz, zt) - i  - ~/~ K ~ (z, Zl) 1 + M 

for some positive number  M to be chosen later. 

Note that  IILkll ~< IILll, write f2 k = [J E(z} k), r), and let ;gk be the characteristic 
l = l  

function of Qk. 
Since we are assuming that Tdv$ e 8p (A~), we have Tzkev $ e 8p (A~) and II T~ev$ IIsp ~< 

-< IIT~.~ll~p. Thus 
~: a Lk Txkdv~Lk~Sp(A 2) and IILk Tz~dv~Lklls p <~ IILkll211Tdv~llsp. 

Fix k and for notation's sake, let wl = z[ k), az(z)= b}k)(z), and Tk = L~Txkdv$xkLk. 
Write Ta = D + E where D = ~(Tkal ,  al}(', et)el and E = ~t(Tka,~,  @ ( . ,  en}el. 
Then l 

IIDtI~,(.) ~ [ITk [I~(H) + IIEII~,(.)~ [ILII ~' lITer II~(H)§ IIEII~(H) �9 

To complete the proof of Lemma 4.4 requires three claims: 

CLAIM 1 . -  IIDllPsp >>-Cr I ~ (bg(z))P K(z, z)dv(z). 
Dk 

CLAIM 2. - For  each 1 <~ k <~ CR, we have 

sup Z [a~(wi)] p lal(wi)lPK(wi, wi) -p < eR 
i n ~ l  

where eR--~ 0 as R--~ ~ .  (Thus is stated as Lemma 4.5 below.) 

CLAIM 3. - ]IEI[Ps, ~< Cea f (b;(z))PK(z, z)dv(z). 
Dk 

Let  us assume these three claims and proceed to finish the proof of Lemma 4.4. We 
have 

f (b;)P d;~ <~ CIIDIIPsp <~ C(lITxkdv $ IlPSp(H) + I[EH~p(H)) ~< CIITdvgl[Psp(A~) + eRC jI (bg)" d;L. 
Dk D k 
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Therefore, for large enough R, 

and hence 

I (bSFd;t <~ 
Q 

E (bSFd~ <<. CRCHTd,~HSp(A~), 
k = l  

QR 

which completes the proof of Lemma 4.4. 

4.1. Proof of Claim 1. 

>~Cr-l~t I (b~(z))PlE(wt'r)l-ldv(z)>~C71~t I 
E(wt, r) E(wt, r) 

(b~ (z))P K(z, z) dv(z) >I 

>~C~1 f (b$(z))PK(z'z)dv(z)>~C(l I (b~(z))PK(z'z)dv(z) 
y E(w~, r) "gk 

where Y2k = yE(wt,  r). 

4.2. Proof of Claim 2. 

LEMMA 4.5. - For each 1 ~ k <~ CR, we have 

sup • la~(w~)[ p tal(wi)lPK(wi, w~) -p < eR 
i n ~ l  

where e R --) 0 as R ---> ~o. 

PROOF. - Recall that ga(wn, Wn)~ K~(w, w) for w �9 E(w~, r) and that since 
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I K" (wi, w) I (1 + M)p is subharmonie, we have 

IKa(wi' Wn)I(I+M)P <~ IE(wn' r)l-1 I IKa(wi' w)[(l+M)Pdv(w)" 
E(wn, r) 

Thus 

ia~(wi)lp < K~(w~w~)-(i+l/2)p IE(w~, r) I-1 I [K"(wi' W)I(I+M)Pdv(w) <<" 
E(w~ r) 

<. C ~ K(w, W )  - (M+I /2 )p  IK"(w~, W)I(M+I)PK(w, w)dv(w). 
E(w~, r) 

For ~ > 0, let Q(~) = {(z, w) e ~ • Q: fi(z, w) > 7}. Then 

E la~(wi)l p lat(w~)l p ~< C Z [ I K~(z' z)-MP-P/2K(z' z)lK"(wi' z)lP+iPdv(z) • 
nr  n~l  

E(wt, ~) 

E(wn, r) 

K" (w,  w)  -Mp - p/2 K ( w ,  w)  ]K a (wi,  w )  I p + Mp dr(w)] 

E(wt, r) • E(w~, r) 

Ka(z, z)-Mp-p/2K(z, z)[K"(wi, z)Ip+Mp • 

• K" (w, w)-MP - p/2 K(w, w) [K ~ (wi w) I p + M, dr(z) dv(w) <~ 

<- C I K"(z' z)-Mp-p/2K(z' z)]Ka(wi' z)]p+Mp X 
9(R/c) 

•  w ) - M p - p / 2 K ( w ,  w ) I K ~ ( w i ,  w)Ip+MP dv • dr(z ,  w ) .  

Now we shall make a change of variables as follows: let ~ be the automorphism of 
~2 interchanging 0 and wi. Then, since I J~ q~ (z) 12 = I k~ (z) 12 = t K(z, wi) 12/K(wi, wi), 

(6) IK"(z, z)-MP-P/2K(z, z)lK~(wi, Z)IP+pMdv(z) = 
Q 

= fKa(q~i(z), q)i(Z))-Mp-p/2K(Q~i(Z), q~i(Z)) • 
Q 

• [K" (wi, cpi(z))I p +pi {K(z, wi)12K(w~w~)-I dv(z). 
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t2 

Let us calculate each of the factors in the last integral, using the formula 

g(cf(z), cp(w))J~cf(z) Jr = g(z ,  w).  

�9 K~(cpi(z), cpi(z)) = (K(z, z) I J~o~(z) 1-2)l-a; 
�9 K(cf~(z), ~ ( z ) )  = IJCw~(z)1-2K(z, z) = IK(z, wi)l-2K(w~w~)K(z, z); 

�9 Ka(wi ,  cpi(z)) = K"(cfi(O), ~i(z)) = K~(O, z ) [ J ~ i ( O )  J r  

�9 I g a ( w i ,  q~i(z))l  = [ ( ] j c g o i ( O ) ] l j e q 3 i ( z ) l ) - l ] l - a  = g a ( w i ,  w i ) ] g a ( z ,  wi)  l ~1 

The integrand in question is thus equal to 

{g"(z, z)( IK~(z, wi)IKa(w~w~)-~/2) -2 }-Mp-p/z • 

• {(IK(z, wi)lK(wi, wi)-V2)-2K(z ,  z)} • 

• IK"(z, wi)l-P-MPKa(wi, Wi)p+MP}{ IK(z, w~)12K(w~wi) -~ } 

and therefore eq. (6) becomes 

K ~ (z, z) -Mp - p/z K(z, z) lK ~ (wi, z) l p + aM dr(z) = 

= K ~ (wi, Wi)-MP-P/2+P+MP ~ K ~ (z, z)-MP-P/2 K(z, z) I K ~ (z, w~) 12(Mp+p/2)-p-Mp dr(z). 

Using the identical calculation in the variable w and noting that for any automor- 
phism of, fl(z, w) = fl(q~(z), c;(w)), we now have 

K(w~, w~)-P E la~(w~)P la~(w~)l p <~ 
n $ l  

t~(R/c) 

•  w)-Mp-p/ZK(w, w) lK~(wi ,  w)IMPdv • dv(z, w) =: I(R,  wi) say.  

Since - Mp - p/2 + Mp = - p/2 < 0 and Mp is big enough, for any fixed w', the 
function 

K"(z ,  z)-Mp-p/2K(z, z)[K~(w ' , z)l Mp • K~(w,  w)-MP-p/2K(w, w)[K"(w  ' , w)[ Mp 

is integrable on t2 • t2. In fact, by [8, Theorem 4.1], for big fi, we have 

I K"(z ,  z)-~ K(z, z ) IK" (w  ' , z)[~+r = K ( w ' ,  w ' )  ~ . 
o 

The function I K"(  �9 , w)I Mp is subharmonic and thus by the maximum principle 
there is a point w0 on the boundary of D such that I (R,  wi) <~ I(R,  wo). Since D(R/c)  ---> 
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--~ 0 as R -~ oo, it follows t h a t  I(R, wi) --) 0 uniformly  in i as R -*  ~ ,  complet ing the 

p roof  of  L e m m a  4.5. 

4.3. Proof of Claim 3. 

]lEIl~p<~ 2 I(Tka~,at}[P<~ ~ z  la~(z)az(z)ld%(z) 
n ~ l  9 

<<. ~. v~(E(wi, r))PKa(wi, wi) p E lan(Wi)l p lat(wi)lPK(wi, wi) -p 
~ l  

<. E (b~(w~)) p E ia~(wi)l p lal(wi)[PK(wi, wi) -p <~ 
i n ~ l  

<- cRE (b2(wi)) p <- zRC f (b$(z))PK(z, z)dv(z). 
i 

Qk 

Combin ing  the  all est imates,  the p roo f  of  T h e o r e m  4.1 is complete.  �9 
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