Skip to main content
Log in

Serum protects against azurophil granule dependent down-regulation of complement receptor type 1 (CR1) on human neutrophils

  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

We have investigated the effect of gradual degranulation on the expression of functional receptors (CR1 and CR3) on human neutrophils. Incubation with increasing concentrations of fMLP (10−10−10−7M) translocated CR1 and CR3 to the cell surface in a similar kinetic pattern. When reaching maximal expression of receptors (10−7 M fMLP), 78 ± 10% and 87 ± 9% of the total pool of CR1 and CR3, respectively, were translocated to the cell surface. To drive the mobilization process further, cytochalasin B was introduced to increase the stimulatory effect of fMLP. No further increase in CR1 surface expression was obtained. However, we found a characteristic time course of surface appearance of CR1 and CR3 with a maximal surface expression within 1 minute, followed by a time-related down-regulation of CR1 but not CR3. In addition, the total pool of CR1 in cytochalasin B treated neutrophils was reduced after 15 minutes stimulation with fMLP measured by flow cytometry and immunoblotting, indicating degradation of CR1. The down-regulation of CR1 was concomitant with a translocation of azurophil granules, in terms of upregulation of CD63. Azurophil, but not specific nor secretory, granule fractions caused a down-regulation of CR1 on fMLP activated neutrophils. The presence of human sera and serine protease inhibitor protected CR1 from down-regulation. Together, these findings indicate that intracellular stored proteases, released in the late part of the sequential mobilization process, alters the expression of functional receptors mobilized in the early part of the mobilization process. The findings also focus on the importance of the microenvironment for the net outcome of neutrophil activation in terms of functional receptor expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bainton DF. Phagocytic cells: Developmental biology of neutrophils and eosinophils. In: Gallin JI, Goldstein IM, Snyderman R, editors, Inflammation. New York, Raven Press, Ltd., 1988:265.

    Google Scholar 

  2. Borregaard N, Miller LJ, Springer TA. Chemoattractant regulated mobilization of a novel intracellular compartment in human neutrophils. Science 1987;237:1204–6.

    PubMed  Google Scholar 

  3. Borregaard N, Lollike K, Kjeldesn L, Sengeløv H, Bastholm L, Nielsen MH, et al. Human neutrophils granules and secretory vesicles. Eur J Haematol 1993;51:187–94.

    PubMed  Google Scholar 

  4. Klickstein LB, Wong WW, Smith JA, Weis JH, Wilson JG, Fearon DT. Human C3b/C4b receptor (CR1). J Exp Med 1987;165:1095–112.

    PubMed  Google Scholar 

  5. Krych M, Atkinson JP, Holers VM. Complement receptors. Curr Opin Immunol 1992;4:8–13.

    PubMed  Google Scholar 

  6. Sengeløv H, Kjeldsen L, Kroeze W, Berger M, Borregaard N. Secretory vesicles are the intracellular reservoir of complement receptor 1 in human neutrophils. J Immunol 1994;153:804–10.

    PubMed  Google Scholar 

  7. Berger M, Wetzler EM, Welter E, Turner JR, Tartakoff AM. Intracellular sites for storage and recycling of C3b receptors in human neutrophils. Proc Natl Acad Sci USA 1991;88:3019–23.

    PubMed  Google Scholar 

  8. Berger M, Sørensen RU, Tose MF, Dearborn DG, Döring G. Complement receptor expression on neutrophils at an inflammatory site, the pseudomonas-infected lung in cystic fibrosis. J Clin Invest 1989;84:1302–13.

    PubMed  Google Scholar 

  9. Tosi MF, Zakem H, Berger M. Neutrophil elastase cleaves C3bi on opsonized pseudomonas as well as CR1 on neutrophils to create a functionally important opsonin receptor mismatch. J Clin Invest 1990;86:300–8.

    PubMed  Google Scholar 

  10. Takahashi T, Inada S, Pommier CG, O'Shea JJ, Brown EJ. Osmotic stress and the freeze-thaw cycle cause shedding of Fc and C3b receptors by human polymorphonuclear leukocytes. J Immunol 1985;134:4062–70.

    PubMed  Google Scholar 

  11. Fearon DT. Anti inflammatory and immunosuppressive effects of recombinant soluble complement receptors. Clin Exp Immunol 1991;86:43–6.

    Google Scholar 

  12. Hill J, Lindsay TF, Ortiz F, Yeh CG, Hechtman HB, Moore Jr FD. Soluble complement receptor type 1 ameliorates the local and remote organ injury after intestinal ischemia reperfusion in the rat. J Immunol 1992;149:1723–8.

    PubMed  Google Scholar 

  13. Mulligan MS, Yeh CG, Rudolph AR, Ward PA. Protective effects of soluble CR1 in complement and neutrophil mediated tissue injury. J Immunol 1992;148:1479–85.

    PubMed  Google Scholar 

  14. Patarroyo M. Leukocyte adhesion to cells. Molecular basis, physiological relevance and abnormalities. Scand J Immunol 1989;30:129–64.

    PubMed  Google Scholar 

  15. Arnaout MA. Structure and function of the leukocyte adhesion molecules CD11/CD18. Blood 1990;5:1037–50.

    Google Scholar 

  16. Larsson RS, Springer TA. Structure and function of leukocyte integrins. Immunol Rev 1990;114:181–217.

    PubMed  Google Scholar 

  17. Springer TA. Adhesion receptors of the immune system. Nature 1990;346:425–34.

    PubMed  Google Scholar 

  18. Wright SD, Levin SM, Jong MC, Chad Z, Kabbash LG. CR3 (CD11b/CD18) express one binding site for arg-gly-asp containing peptides and a second site for bacterial lipopolysaccharides. J Exp Med 1989;169:175–83.

    PubMed  Google Scholar 

  19. Fällman M, Andersson R, Andersson T. Signaling properties of CR3 (Cd11b/CD18) and CR1 (CD35) in relation to phagocytosis of complement opsonized particles. J Immunol 1993;151:330–8.

    PubMed  Google Scholar 

  20. Borregaard N, Christensen L, Bjerrum OW, Birgens JS, Clemmensen I. Identification of a highly mobilizable subset of human neutrophil intracellular vesicles that contains tetranectin and latent alkaline phosphatase. J Clin Invest 1990;85:408–16.

    PubMed  Google Scholar 

  21. Calafat J, Kuijpers TW, Janssen H, Borregaard N, Verhoeven AJ, Roos D. Evidence for small intracellular vesicles in human blood phagocytes containing cytochrome b558 and the adhesion molecule CD11b/CD18. Blood 1993;81:3122–9.

    PubMed  Google Scholar 

  22. Sengeløv H, Kjeldsen L, Borregaard N. Control of exocytosis in early neutrophil activation. J Immunol 1993;150:1535–43.

    PubMed  Google Scholar 

  23. Lundahl J, Dahlgren C, Eklund A, Hed J, Hernbrand R, Tornling G. Quartz selectively down-regulates CR1 on activated human granulocytes. J Leuko Biol 1993;53:99–103

    PubMed  Google Scholar 

  24. Lundahl J, Eklund A, Hed J, Tornling G, Vitas M. Presence of serum modulates expression of complement receptor type 1 (CR1) on human granulocytes after quartz exposure. Inflamm 1993;17:511–9.

    PubMed  Google Scholar 

  25. DeChatelet LR, Cooper MR. A modified procedure for determination of leukocyte alkaline phosphatase. Biochem Med 1970;4:61–8.

    PubMed  Google Scholar 

  26. Khalfan L, Björkstén B, Dahlgren C Follin P. Increased respiratory burst response and alkaline phosphatase activity in human cord blood neutrophils. Pediatr All Immunol 1992;3:91–5.

    Google Scholar 

  27. Dahlgren C, Johansson A, Lundquist H, Bjerrum OW, Borregaard N. Activation of the oxygen-radical-generating system in granules of intact human neutrophils by a calcium ionophore (ionomycin). Biochem Biophys Acta 1992;1137:182–8.

    PubMed  Google Scholar 

  28. Borregaard N, Heiple JM, Simons ER, Clark RA. Subcellular localization of the b cytochrome component of the human neutrophil microbicidal oxidase: Translocation during activation. J Cell Biol 1983;97:52–61.

    PubMed  Google Scholar 

  29. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970;227:680–5.

    PubMed  Google Scholar 

  30. Sjölin C, Stendahl O, Dahlgren C. Calcium-induced translocation of annexins to subcellular organelles of human neutrophils. Biochem J 1994;300:325–30.

    PubMed  Google Scholar 

  31. Halldén G, Andersson U, Hed J, Johansson SGO. A new membrane permeabilization method for the detection of intracellular antigens by flow cytometry. J Immunol Meth 1981;124:103–9.

    Google Scholar 

  32. Lundahl J, Halldén G, Hed J, Johansson SGO. A flow cytometric method to measure the stimulated mobilization and the intracellular pool of the adhesion promoting glucoprotein Mac-1. APMIS 1991;99:139–46.

    PubMed  Google Scholar 

  33. Kuijpers TW, Tool ATJ, van der Schoot CE, Onderwater JJM, Roos D, Verhoeven AJ. Membrane surface antigen expression on neutrophils: a reappraisal of the use of surface markers for neutrophil activation. Blood 1991;78:1105–11.

    PubMed  Google Scholar 

  34. Ohmori H, Toyama S, Toyama S. Direct proof that the primary site of action of cytochalasin on cell motility processes is actin. J Cell Biol 1992;116:933–41.

    PubMed  Google Scholar 

  35. Carrell RW, Boswell DR. Serpins; the superfamily of plasma serine proteinase inhibitors. In: Barrett A, Salvesen G, editors. Haemostasis and thrombosis. Amsterdam: Elsevier Biomedical Press, 1986:403–19.

    Google Scholar 

  36. Jutila MA, Rott L, Berg EL, Butcher EC. Function and regulation of the neutrophil MEL-14 antigen in vivo: Comparison with LFA-1 and MAC-1. J Immunol 1989;43:3318–24.

    Google Scholar 

  37. von Andrian UH, Chambers JD, McEvoy LM, Bargatze RF, Arfors KE, Butcher EC. Two-step model of leucocyte-endothelial cell interaction in inflammation: District roles for LECAM-1 and the leucocyte beta-2 integrins in vivo. Proc Natl Acad Sci USA 1991;8:7538–42.

    Google Scholar 

  38. Borregaard N, Kjeldsen L, Rygaard K, Bastholm L, Nielsen MH, Sengeløv H, et al. Stimulus dependent secretion of plasma proteins from human neutrophils. J Clin Invest 1992;90:86–96.

    PubMed  Google Scholar 

  39. Borregaard N, Kjeldsen L, Sengeløv H, Diamond MS, Springer TA, Anderson HC, et al. Changes in subcellular localization and surface expression of L-selectin, alkaline phosphatase and Mac-1 in human neutrophils during stimulation with inflammatorymediators. J Leuko Biol 1994;56:80–7.

    PubMed  Google Scholar 

  40. Jutila MA, Kishimoto TK, Finken M. Low-dose chymotrypsin treatment inhibits neutrophil migration into sites of inflammation in vivo: Effects on Mac-1 and MEL-14 adhesion protein expression and function. Cell Immunol 1991;132:201–14.

    PubMed  Google Scholar 

  41. Segal AW, Dorling J, Coade S. Kinetics of fusion of the cytoplasmic granules with phagocytic vacuoles in human polymorphonuclear leukocytes. Biochemical and morphological studies. J Cell Biol 1980;85:42–59.

    PubMed  Google Scholar 

  42. Malbran A, Siwik S, Frank MM, Fries LF. CR1 receptor recycling in phorbol ester activated polymorphonuclear leucocytes. Immunol 1988;63:325–30.

    Google Scholar 

  43. Turner JR, Tartakoff AM, Berger M. Intracellular degradation of the C3b/C4b receptor in the abscence of ligand. J Immunol 1988;263:4914–20.

    Google Scholar 

  44. Carpentier JL, Lew DP, Paccaud JP, Gil R, Lacopetta B, Kazatchkine M, Stendahl O, Pozzan T. Internalization pathway of C3b receptors in human neutrophils and its transmodulation by chemotattractant receptors stimulation. Cell Regul 1991;2:41–55.

    PubMed  Google Scholar 

  45. O'Shea JJ, Brown EJ, Gaither TA, Takahashi T, Frank MM. Tumor-promoting phorbol esters induce rapid internalization of the C3b receptor via a cytoskeleton-dependent mechanism. J Immunol 1985;135:1325–30.

    PubMed  Google Scholar 

  46. Campbell EJ, Campbell MA. Pericellular proteolysis by neutrophils in the presence of proteine inhibitors: Effects of substrate opsonozation. J Cell Biol 1988;106:667–76.

    PubMed  Google Scholar 

  47. O'Shea JJ, Brown EJ, Seligmann BE, Metcalf JA, Frank MM, Gallin JI. Evidence for distinct intracellular pools of receptors for C3b and C3bi in human neutrophils. J Immunol 1985;134:2580–7.

    PubMed  Google Scholar 

  48. Berger M, Medof ME. Increased expression of complement decay-accelerating factor of human neutrophils. J Clin Invest 1987;79:214–20.

    PubMed  Google Scholar 

  49. Miller LJ, Bianton DF, Borregaard N, Springer TA. Stimulated mobilization of monocyte Mac-1 and p150.95 adhesion proteins from an intracellular vesicular compartment to the cell surface. J Clin Invest 1987;80:535–44.

    PubMed  Google Scholar 

  50. Hed J, Berg O, Forslid J, Halldén G, Lärka-Raffner G. The expression of CR1 and CR3 on non-modulated and modulated granulocytes of healthy blood donors as measured by flow cytometry. Scand J Immunol 1988;28:339–44.

    PubMed  Google Scholar 

  51. van Epps DE, Bender JG, Simpson SJ, Chenoweth DE. Relationship of chemotactic receptors for formyl peptide and C5a to CR1, CR3 and Fc receptors on human neutrophils. J Leukocyte Biol 1990;47:519–27.

    PubMed  Google Scholar 

  52. Berger M, O'Shea J, Cross AS, Folks TM, Chused TM, Brown EJ, et al. Human neutrophils increase expression of C3bi as well as C3b receptors upon activation. J Clin Invest 1984;74:1566–71.

    PubMed  Google Scholar 

  53. Jones DH, Schmalstieg FC, Dempsey K, Krater SS, Nannen DD, Smith CW, et al. Subcellular distribution and mobilization of MAC-1 (CD11b/CD18) in neonatal neutrophils. Blood 1990;75:488–98.

    PubMed  Google Scholar 

  54. Graves V, Gabig T, McCarthy L, Strour EF, Leemhuis T, English D. Simultaneous mobilization of Mac-1 (CD11b/CD18) and formyl peptide chemoattractant receptors in human neutrophils. Blood 1992;80:776–87.

    PubMed  Google Scholar 

  55. Sengeløv H, Kjeldsen L, Diamond MS, Springer TA, Borregaard N. Subcellular localization and dynamics of Mac-1 (alpha m beta 2) in human neutrophils. J Clin Invest 1993;92:1467–76.

    PubMed  Google Scholar 

  56. Kjeldsen L, Sengeløv H, Lollike K, Nielsen MH, Borregaard N. Isolation and characterization of gelatinase granules from human neutrophils. Blood 1994;83:1640–9.

    PubMed  Google Scholar 

  57. Pascual M, Duchosal MA, Steiger G, Giostra E, Pechère A, Paccaud JP, Danielsson CO, Schifferli JA. Circulating soluable CR1 (CD35);serum levels in diseases and evidence for its release by human leukocytes. J Immunol 1993;151:1702–11.

    PubMed  Google Scholar 

  58. Klickstein LB, Etemad JK, Springer TA. A sequence within the COOH-terminal region of human CR1 determines expression of a soluble form of the receptor. Compl Inflamm 1991;8:174–87.

    Google Scholar 

  59. Csernok E, Ernst M, Schmitt W, Bainton DF, Gross WL. Activated neutrophils express proteinase 3 on their plasma membrane in vitro and in vivo. Clin Exp Immunol 1994;95:244–50.

    PubMed  Google Scholar 

  60. Berger M, Wetzler EM, Wallis RS. Tumor necrosis factor is the major monocyte product that increases complement receptor expression on mature neutrophils. Blood 1988;71:151–8.

    PubMed  Google Scholar 

  61. Berg O, Carenfelt C, Halldén G, Hed J. CR1 expression and C3b mediated phagocytosis of granulocytes in purulent maxillary secretion and peripheral blood from patients with sinusitis. Acta Otolaryngol 1989;107:130–5.

    PubMed  Google Scholar 

  62. Werfel T, Sonntag G, Weber MH, Götze O. Rapid increases in the membrane expression of neutral endopeptidase (CD10), aminopeptidase N (CD13), tyrosine phosphatase (CD45) and Fc gamma-RIII (CD16) upon stimulation of human leukocytes with human C5a. J Immunol 1991;147:3909–14.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lundahl, J., Dahlgren, C., Gustavsson, K. et al. Serum protects against azurophil granule dependent down-regulation of complement receptor type 1 (CR1) on human neutrophils. Inflamm Res 44, 438–446 (1995). https://doi.org/10.1007/BF01757701

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01757701

Key words

Navigation