Skip to main content

Regulatory Mechanisms in Neutrophil Degranulation

  • Chapter
  • First Online:
Immunopharmacology and Inflammation

Abstract

Bone marrow-derived circulating neutrophils of the innate immune system extravasate through blood vessel walls to sites of infection and injury where they orchestrate a myriad of protective and destructive host responses during acute inflammation. Although neutrophils comprise the first line of defense against exogenous and endogenous insults, these abundantly produced white blood cells can damage tissues and consequently increase the severity of inflammatory diseases. Neutrophils undergo receptor-mediated respiratory burst and release inflammatory mediators by degranulation of membrane-bound secretory granules after migrating from the bloodstream in response to chemotactic signals generated at inflammatory foci. Many studies point to degranulation as the chief causative process involved in inflammatory disorders, but the underlying mechanisms remain poorly understood. We discuss the complex interplay of distal, intracellular pathways involving numerous signaling proteins that are implicated in the exocytosis of granular contents. This review summarizes current knowledge of neutrophil biology and highlights mechanisms that regulate degranulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

a2V:

V-ATPase subunit

ATP:

Adenosine triphosphate

ATPase:

Adenosine triphosphatase

BoNT:

Botulinum neurotoxin

ER:

Endoplasmic reticulum

ERK:

Extracellular signal-regulated kinase

fMLP:

N-formyl-methionyl-leucyl-phenylalanine

GDP:

Guanosine diphosphate

GEF:

Guanine nucleotide exchange factor

GPCR:

G protein-coupled receptor

GTP:

Guanosine triphosphate

GTPase:

Guanosine triphosphatase

GTPγS:

Guanosine 5′-O-(γ-thio) triphosphate

IL-8:

Interleukin-8

LTF:

Lactoferrin

MAP:

Mitogen-activated protein

MARCKS:

Myristoylated alanine-rich C kinase substrate

MMP:

Matrix metalloprotease

MPO:

Myeloperoxidase

NADPH:

Nicotinamide adenine dinucleotide phosphate

NET:

Neutrophil extracellular trap

Nexinhibs:

Neutrophil exocytosis inhibitors

NSF:

N-ethylmaleimide-sensitive factor

PI3K:

Phosphatidylinositol 3-kinase

PIKfyve:

FYVE domain-containing phosphatidylinositol 3-phosphate 5-kinase

PIP2 :

Phosphatidylinositol 4,5-bisphosphate

PMA:

Phorbol 12-myristate 13-acetate

PTP-MEG2:

Protein tyrosine phosphatase MEG2

Q-SNARE:

SNARE expressing a key glutamine residue in the SNARE-binding domain; also known as t-SNARE in exocytosis; members include syntaxins, SNAP-23, and SNAP-25

Rac:

ras-related C3 botulinum toxin substrate

ROS:

Reactive oxygen species

R-SNARE:

SNARE expressing a key arginine residue in the SNARE-binding domain; also known as v-SNARE in exocytosis; members include VAMPs

SFKs:

src family of non-receptor tyrosine kinases

SNAP:

N-ethylmaleimide-sensitive factor attachment protein or synaptosomal-associated protein

SNARE:

N-ethylmaleimide-sensitive factor attachment protein receptor

SV:

Secretory vesicle N-ethylmaleimide-sensitive factor attachment protein receptor

TeNT:

Tetanus neurotoxin

TLR:

Toll-like receptor

VAMP:

Vesicle-associated membrane protein

References

  1. Parkos CA (2016) Neutrophil-epithelial interactions: a double-edged sword. Am J Pathol 186(6):1404–1416. https://doi.org/10.1016/j.ajpath.2016.02.001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Scapini P, Tamassia N, Pucillo C, Cassatella MA (2013) Granulocytes and mast cells. Fundamental immunology, 7th edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  3. Vorobjeva N, Prikhodko A, Galkin I, Pletjushkina O, Zinovkin R, Sud'ina G, Chernyak B, Pinegin B (2017) Mitochondrial reactive oxygen species are involved in chemoattractant-induced oxidative burst and degranulation of human neutrophils in vitro. Eur J Cell Biol 96(3):254–265. https://doi.org/10.1016/j.ejcb.2017.03.003

    Article  PubMed  CAS  Google Scholar 

  4. Skubitz KM (1999) Neutrophilic leukocytes. In: Wintrobe’s Clinical Hematology. Williams & Wilkins, Baltimore

    Google Scholar 

  5. Lacy P (2006) Mechanisms of degranulation in neutrophils. Allergy Asthma Clin Immunol 2(3):98–108. https://doi.org/10.1186/1710-1492-2-3-98

    Article  PubMed  PubMed Central  Google Scholar 

  6. Futosi K, Fodor S, Mocsai A (2013) Neutrophil cell surface receptors and their intracellular signal transduction pathways. Int Immunopharmacol 17(4):1185–1197. https://doi.org/10.1016/j.intimp.2013.11.010

    Article  PubMed  CAS  Google Scholar 

  7. Cowland JB, Borregaard N (2016) Granulopoiesis and granules of human neutrophils. Immunol Rev 273(1):11–28. https://doi.org/10.1111/imr.12440

    Article  PubMed  CAS  Google Scholar 

  8. Johnson JL, Ramadass M, He J, Brown SJ, Zhang J, Abgaryan L, Biris N, Gavathiotis E, Rosen H, Catz SD (2016) Identification of neutrophil exocytosis inhibitors (Nexinhibs), small molecule inhibitors of neutrophil exocytosis and inflammation: druggability of the small GTPase Rab27a. J Biol Chem 291(50):25965–25982. https://doi.org/10.1074/jbc.M116.741884

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Kjeldsen L, Sengelov K, Lollike M, Nielsen H, Borregaard N (1994) Isolation and characterization of gelatinase granules from human neutrophils. Blood 83:1640–1649

    PubMed  CAS  Google Scholar 

  10. Faurschou M, Borregaard N (2003) Neutrophil granules and secretory vesicles in inflammation. Microbes Infect 5(14):1317–1327

    Article  CAS  PubMed  Google Scholar 

  11. Lacy P, Stow JL (2011) Cytokine release from innate immune cells: association with diverse membrane trafficking pathways. Blood 118(1):9–18. https://doi.org/10.1182/blood-2010-08-265892

    Article  PubMed  CAS  Google Scholar 

  12. Toonen RF, Verhage M (2003) Vesicle trafficking: pleasure and pain from SM genes. Trends Cell Biol 13(4):177–186

    Article  CAS  PubMed  Google Scholar 

  13. Burgoyne RD, Morgan A (2003) Secretory granule exocytosis. Physiol Rev 83(2):581–632

    Article  CAS  PubMed  Google Scholar 

  14. Stow JL, Manderson AP, Murray RZ (2006) SNAREing immunity: the role of SNAREs in the immune system. Nat Rev Immunol 6(12):919–929

    Article  CAS  PubMed  Google Scholar 

  15. Lee JJ, Rosenberg HF (2013) Eosinophils in health and disease. Elsevier, Waltham

    Google Scholar 

  16. Nusse O, Lindau M (1988) The dynamics of exocytosis in human neutrophils. J Cell Biol 107(6 Pt 1):2117–2123

    Article  CAS  PubMed  Google Scholar 

  17. Theander S, Lew DP, Nusse O (2002) Granule-specific ATP requirements for Ca2+-induced exocytosis in human neutrophils. Evidence for substantial ATP-independent release. J Cell Sci 115(Pt 14):2975–2983

    PubMed  CAS  Google Scholar 

  18. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A (2004) Neutrophil extracellular traps kill bacteria. Science 303(5663):1532–1535. https://doi.org/10.1126/science.1092385

    Article  PubMed  CAS  Google Scholar 

  19. Nauseef WM, Kubes P (2016) Pondering neutrophil extracellular traps with healthy skepticism. Cell Microbiol 18(10):1349–1357. https://doi.org/10.1111/cmi.12652

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Lee KH, Kronbichler A, Park DD, Park Y, Moon H, Kim H, Choi JH, Choi Y, Shim S, Lyu IS, Yun BH, Han Y, Lee D, Lee SY, Yoo BH, Lee KH, Kim TL, Kim H, Shim JS, Nam W, So H, Choi S, Lee S, Shin JI (2017) Neutrophil extracellular traps (NETs) in autoimmune diseases: a comprehensive review. Autoimmun Rev. https://doi.org/10.1016/j.autrev.2017.09.012

  21. Sorensen OE, Borregaard N (2016) Neutrophil extracellular traps – the dark side of neutrophils. J Clin Invest 126(5):1612–1620. https://doi.org/10.1172/JCI84538

    Article  PubMed  PubMed Central  Google Scholar 

  22. Martinelli S, Urosevic M, Daryadel A, Oberholzer PA, Baumann C, Fey MF, Dummer R, Simon HU, Yousefi S (2004) Induction of genes mediating interferon-dependent extracellular trap formation during neutrophil differentiation. J Biol Chem 279(42):44123–44132. https://doi.org/10.1074/jbc.M405883200

    Article  PubMed  CAS  Google Scholar 

  23. Ma AC, Kubes P (2008) Platelets, neutrophils, and neutrophil extracellular traps (NETs) in sepsis. J Thromb Haemost 6(3):415–420. https://doi.org/10.1111/j.1538-7836.2007.02865.x

    Article  PubMed  CAS  Google Scholar 

  24. Wartha F, Beiter K, Normark S, Henriques-Normark B (2007) Neutrophil extracellular traps: casting the NET over pathogenesis. Curr Opin Microbiol 10(1):52–56. https://doi.org/10.1016/j.mib.2006.12.005

    Article  PubMed  CAS  Google Scholar 

  25. Doring Y, Soehnlein O, Weber C (2017) Neutrophil extracellular traps in atherosclerosis and atherothrombosis. Circ Res 120(4):736–743. https://doi.org/10.1161/CIRCRESAHA.116.309692

    Article  PubMed  CAS  Google Scholar 

  26. Lood C, Blanco LP, Purmalek MM, Carmona-Rivera C, De Ravin SS, Smith CK, Malech HL, Ledbetter JA, Elkon KB, Kaplan MJ (2016) Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat Med 22(2):146–153. https://doi.org/10.1038/nm.4027

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Clark SR, Ma AC, Tavener SA, McDonald B, Goodarzi Z, Kelly MM, Patel KD, Chakrabarti S, McAvoy E, Sinclair GD, Keys EM, Allen-Vercoe E, Devinney R, Doig CJ, Green FH, Kubes P (2007) Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med 13(4):463–469. https://doi.org/10.1038/nm1565

    Article  PubMed  CAS  Google Scholar 

  28. Czaikoski PG, Mota JM, Nascimento DC, Sonego F, Castanheira FV, Melo PH, Scortegagna GT, Silva RL, Barroso-Sousa R, Souto FO, Pazin-Filho A, Figueiredo F, Alves-Filho JC, Cunha FQ (2016) Neutrophil extracellular traps induce organ damage during experimental and clinical sepsis. PLoS One 11(2):e0148142. https://doi.org/10.1371/journal.pone.0148142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Jorch SK, Kubes P (2017) An emerging role for neutrophil extracellular traps in noninfectious disease. Nat Med 23(3):279–287. https://doi.org/10.1038/nm.4294

    Article  PubMed  CAS  Google Scholar 

  30. Toussaint M, Jackson DJ, Swieboda D, Guedan A, Tsourouktsoglou TD, Ching YM, Radermecker C, Makrinioti H, Aniscenko J, Edwards MR, Solari R, Farnir F, Papayannopoulos V, Bureau F, Marichal T, Johnston SL (2017) Host DNA released by NETosis promotes rhinovirus-induced type-2 allergic asthma exacerbation. Nat Med 23(6):681–691. https://doi.org/10.1038/nm.4332

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Norman JC, Price LS, Ridley AJ, Hall A, Koffer A (1994) Actin filament organization in activated mast cells is regulated by heterotrimeric and small GTP-binding proteins. J Cell Biol 126(4):1005–1015

    Article  CAS  PubMed  Google Scholar 

  32. Muallem S, Kwiatkowska K, Xu X, Yin HL (1995) Actin filament disassembly is a sufficient final trigger for exocytosis in nonexcitable cells. J Cell Biol 128(4):589–598

    Article  CAS  PubMed  Google Scholar 

  33. Takao-Rikitsu E, Mochida S, Inoue E, Deguchi-Tawarada M, Inoue M, Ohtsuka T, Takai Y (2004) Physical and functional interaction of the active zone proteins, CAST, RIM1, and bassoon, in neurotransmitter release. J Cell Biol 164(2):301–311. https://doi.org/10.1083/jcb.200307101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Downey GP, Elson EL, Schwab B 3rd, Erzurum SC, Young SK, Worthen GS (1991) Biophysical properties and microfilament assembly in neutrophils: modulation by cyclic AMP. J Cell Biol 114(6):1179–1190

    Article  CAS  PubMed  Google Scholar 

  35. Filippi MD, Harris CE, Meller J, Gu Y, Zheng Y, Williams DA (2004) Localization of Rac2 via the C terminus and aspartic acid 150 specifies superoxide generation, actin polarity and chemotaxis in neutrophils. Nat Immunol 5(7):744–751. https://doi.org/10.1038/ni1081

    Article  PubMed  CAS  Google Scholar 

  36. Mitchell T, Lo A, Logan MR, Lacy P, Eitzen G (2008) Primary granule exocytosis in human neutrophils is regulated by Rac-dependent actin remodeling. Am J Physiol Cell Physiol 295(5):C1354–C1365. https://doi.org/10.1152/ajpcell.00239.2008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Affolter M, Weijer CJ (2005) Signaling to cytoskeletal dynamics during chemotaxis. Dev Cell 9(1):19–34. https://doi.org/10.1016/j.devcel.2005.06.003

    Article  PubMed  CAS  Google Scholar 

  38. Tuma RS (2006) Cell front supports the back. J Cell Biol. 173(3):318

    Article  Google Scholar 

  39. Zigmond SH, Levitsky HI, Kreel BJ (1981) Cell polarity: an examination of its behavioral expression and its consequences for polymorphonuclear leukocyte chemotaxis. J Cell Biol 89(3):585–592

    Article  CAS  PubMed  Google Scholar 

  40. Xu J, Wang F, Van Keymeulen A, Herzmark P, Straight A, Kelly K, Takuwa Y, Sugimoto N, Mitchison T, Bourne HR (2003) Divergent signals and cytoskeletal assemblies regulate self-organizing polarity in neutrophils. Cell 114(2):201–214

    Article  CAS  PubMed  Google Scholar 

  41. Jog NR, Rane MJ, Lominadze G, Luerman GC, Ward RA, McLeish KR (2007) The actin cytoskeleton regulates exocytosis of all neutrophil granule subsets. Am J Physiol Cell Physiol 292(5):C1690–C1700. https://doi.org/10.1152/ajpcell.00384.2006

    Article  PubMed  CAS  Google Scholar 

  42. Pinxteren JA, O'Sullivan AJ, Larbi KY, Tatham PE, Gomperts BD (2000) Thirty years of stimulus-secretion coupling: from Ca(2+) toGTP in the regulation of exocytosis. Biochimie 82(4):385–393

    Article  CAS  PubMed  Google Scholar 

  43. Sengelov H, Kjeldsen L, Borregaard N (1993) Control of exocytosis in early neutrophil activation. J Immunol 150(4):1535–1543

    PubMed  CAS  Google Scholar 

  44. Brumell JH, Volchuk A, Sengelov H, Borregaard N, Cieutat AM, Bainton DF, Grinstein S, Klip A (1995) Subcellular distribution of docking/fusion proteins in neutrophils, secretory cells with multiple exocytic compartments. J Immunol 155(12):5750–5759

    PubMed  CAS  Google Scholar 

  45. Andersson T, Dahlgren C, Pozzan T, Stendahl O, Lew PD (1986) Characterization of fMet-Leu-Phe receptor-mediated Ca2+ influx across the plasma membrane of human neutrophils. Mol Pharmacol 30(5):437–443

    PubMed  CAS  Google Scholar 

  46. Itagaki K, Kannan KB, Livingston DH, Deitch EA, Fekete Z, Hauser CJ (2002) Store-operated calcium entry in human neutrophils reflects multiple contributions from independently regulated pathways. J Immunol 168(8):4063–4069

    Article  CAS  PubMed  Google Scholar 

  47. Sjolin C, Stendahl O, Dahlgren C (1994) Calcium-induced translocation of annexins to subcellular organelles of human neutrophils. Biochem J 300(Pt 2):325–330

    Article  PubMed  PubMed Central  Google Scholar 

  48. Brown GE, Reed EB, Lanser ME (1991) Neutrophil CR3 expression and specific granule exocytosis are controlled by different signal transduction pathways. J Immunol 147(3):965–971

    PubMed  CAS  Google Scholar 

  49. Haribabu B, Richardson RM, Verghese MW, Barr AJ, Zhelev DV, Snyderman R (2000) Function and regulation of chemoattractant receptors. Immunol Res 22(2–3):271–279. https://doi.org/10.1385/IR:22:2-3:271

    Article  PubMed  CAS  Google Scholar 

  50. Steadman R, Petersen MM, Williams JD (1996) Human neutrophil secondary granule exocytosis is independent of protein kinase activation and is modified by calmodulin activity. Int J Biochem Cell Biol 28(7):777–786

    Article  CAS  PubMed  Google Scholar 

  51. Donnelly SR, Moss SE (1997) Annexins in the secretory pathway. Cell Mol Life Sci 53(6):533–538

    Article  CAS  PubMed  Google Scholar 

  52. Cockcroft S, Barrowman MM, Gomperts BD (1985) Breakdown and synthesis of polyphosphoinositides in fMetLeuPhe-stimulated neutrophils. FEBS Lett 181(2):259–263

    Article  CAS  PubMed  Google Scholar 

  53. Naccache PH, Molski MM, Volpi M, Becker EL, Sha'afi RI (1985) Unique inhibitory profile of platelet activating factor induced calcium mobilization, polyphosphoinositide turnover and granule enzyme secretion in rabbit neutrophils towards pertussis toxin and phorbol ester. Biochem Biophys Res Commun 130(2):677–684

    Article  CAS  PubMed  Google Scholar 

  54. Bradford PG, Rubin RP (1985) Characterization of formylmethionyl-leucyl-phenylalanine stimulation of inositol trisphosphate accumulation in rabbit neutrophils. Mol Pharmacol 27(1):74–78

    PubMed  CAS  Google Scholar 

  55. Cockcroft S, Garner K (2013) Potential role for phosphatidylinositol transfer protein (PITP) family in lipid transfer during phospholipase C signalling. Adv Biol Regul 53(3):280–291. https://doi.org/10.1016/j.jbior.2013.07.007

    Article  PubMed  CAS  Google Scholar 

  56. Kim C, Marchal CC, Penninger J, Dinauer MC (2003) The hemopoietic Rho/Rac guanine nucleotide exchange factor Vav1 regulates N-formyl-methionyl-leucyl-phenylalanine-activated neutrophil functions. J Immunol 171(8):4425–4430

    Article  CAS  PubMed  Google Scholar 

  57. Gakidis MA, Cullere X, Olson T, Wilsbacher JL, Zhang B, Moores SL, Ley K, Swat W, Mayadas T, Brugge JS (2004) Vav GEFs are required for β2 integrin-dependent functions of neutrophils. J Cell Biol 166(2):273–282. https://doi.org/10.1083/jcb.200404166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Fumagalli L, Zhang H, Baruzzi A, Lowell CA, Berton G (2007) The Src family kinases Hck and Fgr regulate neutrophil responses to N-formyl-methionyl-leucyl-phenylalanine. J Immunol 178(6):3874–3885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fensome A, Cunningham E, Prosser S, Tan SK, Swigart P, Thomas G, Hsuan J, Cockcroft S (1996) ARF and PITP restore GTPγS-stimulated protein secretion from cytosol-depleted HL60 cells by promoting PIP2 synthesis. Curr Biol 6(6):730–738

    Article  CAS  PubMed  Google Scholar 

  60. Kaldi K, Szeberenyi J, Rada BK, Kovacs P, Geiszt M, Mocsai A, Ligeti E (2002) Contribution of phopholipase D and a brefeldin A-sensitive ARF to chemoattractant-induced superoxide production and secretion of human neutrophils. J Leukoc Biol 71(4):695–700

    PubMed  CAS  Google Scholar 

  61. McMahon HT, Boucrot E (2015) Membrane curvature at a glance. J Cell Sci 128(6):1065–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kooijman EE, Chupin V, de Kruijff B, Burger KN (2003) Modulation of membrane curvature by phosphatidic acid and lysophosphatidic acid. Traffic 4(3):162–174

    Article  CAS  PubMed  Google Scholar 

  63. Dayam RM, Sun CX, Choy CH, Mancuso G, Glogauer M, Botelho RJ (2017) The lipid kinase PIKfyve coordinates the neutrophil immune response through the activation of the Rac GTPase. J Immunol 199(6):2096–2105. https://doi.org/10.4049/jimmunol.1601466

    Article  PubMed  CAS  Google Scholar 

  64. Kovacs M, Nemeth T, Jakus Z, Sitaru C, Simon E, Futosi K, Botz B, Helyes Z, Lowell CA, Mocsai A (2014) The Src family kinases Hck, Fgr, and Lyn are critical for the generation of the in vivo inflammatory environment without a direct role in leukocyte recruitment. J Exp Med 211(10):1993–2011. https://doi.org/10.1084/jem.20132496

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Mohn H, Le Cabec V, Fischer S, Maridonneau-Parini I (1995) The src-family protein-tyrosine kinase p59hck is located on the secretory granules in human neutrophils and translocates towards the phagosome during cell activation. Biochem J 309(Pt 2):657–665

    Article  PubMed  PubMed Central  Google Scholar 

  66. Gutkind JS, Robbins KC (1989) Translocation of the FGR protein-tyrosine kinase as a consequence of neutrophil activation. Proc Natl Acad Sci U S A 86(22):8783–8787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. He Y, Kapoor A, Cook S, Liu S, Xiang Y, Rao CV, Kenis PJ, Wang F (2011) The non-receptor tyrosine kinase Lyn controls neutrophil adhesion by recruiting the CrkL-C3G complex and activating Rap1 at the leading edge. J Cell Sci 124(Pt 13):2153–2164. https://doi.org/10.1242/jcs.078535

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Mocsai A, Jakus Z, Vantus T, Berton G, Lowell CA, Ligeti E (2000) Kinase pathways in chemoattractant-induced degranulation of neutrophils: the role of p38 mitogen-activated protein kinase activated by Src family kinases. J Immunol 164(8):4321–4331

    Article  CAS  PubMed  Google Scholar 

  69. Armstrong CL, Miralda I, Neff AC, Tian S, Vashishta A, Perez L, Le J, Lamont RJ, Uriarte SM (2016) Filifactor alocis promotes neutrophil degranulation and chemotactic activity. Infect Immun 84(12):3423–3433. https://doi.org/10.1128/IAI.00496-16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Potera RM, Jensen MJ, Hilkin BM, South GK, Hook JS, Gross EA, Moreland JG (2016) Neutrophil azurophilic granule exocytosis is primed by TNF-α and partially regulated by NADPH oxidase. Innate Immun 22(8):635–646. https://doi.org/10.1177/1753425916668980

    Article  PubMed  CAS  Google Scholar 

  71. Volk AP, Barber BM, Goss KL, Ruff JG, Heise CK, Hook JS, Moreland JG (2011) Priming of neutrophils and differentiated PLB-985 cells by pathophysiological concentrations of TNF-α is partially oxygen dependent. J Innate Immun 3(3):298–314. https://doi.org/10.1159/000321439

    Article  PubMed  CAS  Google Scholar 

  72. Sharma D, Parameswaran N (2015) Multifaceted role of β-arrestins in inflammation and disease. Genes Immun 16(8):499–513. https://doi.org/10.1038/gene.2015.37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Barlic J, Andrews JD, Kelvin AA, Bosinger SE, DeVries ME, Xu L, Dobransky T, Feldman RD, Ferguson SS, Kelvin DJ (2000) Regulation of tyrosine kinase activation and granule release through β-arrestin by CXCRI. Nat Immunol 1(3):227–233. https://doi.org/10.1038/79767

    Article  PubMed  CAS  Google Scholar 

  74. Ferguson SS, Downey WE 3rd, Colapietro AM, Barak LS, Menard L, Caron MG (1996) Role of β-arrestin in mediating agonist-promoted G protein-coupled receptor internalization. Science 271(5247):363–366

    Article  CAS  PubMed  Google Scholar 

  75. Zoudilova M, Min J, Richards HL, Carter D, Huang T, DeFea KA (2010) β-Arrestins scaffold cofilin with chronophin to direct localized actin filament severing and membrane protrusions downstream of protease-activated receptor-2. J Biol Chem 285(19):14318–14329. https://doi.org/10.1074/jbc.M109.055806

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Gaffal E, Jakobs M, Glodde N, Schroder R, Kostenis E, Tuting T (2014) β-arrestin 2 inhibits proinflammatory chemokine production and attenuates contact allergic inflammation in the skin. J Invest Dermatol 134(8):2131–2137. https://doi.org/10.1038/jid.2014.117

    Article  PubMed  CAS  Google Scholar 

  77. Gomperts BD (1990) GE: a GTP-binding protein mediating exocytosis. Annu Rev Physiol 52:591–606. https://doi.org/10.1146/annurev.ph.52.030190.003111

    Article  PubMed  CAS  Google Scholar 

  78. Hall A (2000) GTPases. In: Frontiers in Molecular Biology Series, eds. BD Hames and DM Dlover, Oxford University Press, Oxford, UK

    Google Scholar 

  79. Logan MR, Lacy P, Odemuyiwa SO, Steward M, Davoine F, Kita H, Moqbel R (2006) A critical role for vesicle-associated membrane protein-7 in exocytosis from human eosinophils and neutrophils. Allergy 61(6):777–784. https://doi.org/10.1111/j.1398-9995.2006.01089.x

    Article  PubMed  CAS  Google Scholar 

  80. Turner MD, Plutner H, Balch WE (1997) A Rab GTPase is required for homotypic assembly of the endoplasmic reticulum. J Biol Chem 272(21):13479–13483

    Article  CAS  PubMed  Google Scholar 

  81. Wennerberg K, Der CJ (2004) Rho-family GTPases: it’s not only Rac and Rho (and I like it). J Cell Sci 117:1301–1312. https://doi.org/10.1242/jcs

    Article  PubMed  CAS  Google Scholar 

  82. Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420(6916):629–635

    Article  CAS  PubMed  Google Scholar 

  83. Ridley AJ (2001) Rho family proteins: coordinating cell responses. Trends Cell Biol 11(12):471–477

    Article  CAS  PubMed  Google Scholar 

  84. Just I, Selzer J, Wilm M, von Eichel-Streiber C, Mann M, Aktories K (1995) Glucosylation of Rho proteins by Clostridium difficile toxin B. Nature 375(6531):500–503. https://doi.org/10.1038/375500a0

    Article  PubMed  CAS  Google Scholar 

  85. Popoff MR, Chaves-Olarte E, Lemichez E, von Eichel-Streiber C, Thelestam M, Chardin P, Cussac D, Antonny B, Chavrier P, Flatau G, Giry M, de Gunzburg J, Boquet P (1996) Ras, Rap, and Rac small GTP-binding proteins are targets for Clostridium sordellii lethal toxin glucosylation. J Biol Chem 271(17):10217–10224

    Article  CAS  PubMed  Google Scholar 

  86. Werner E (2004) GTPases and reactive oxygen species: switches for killing and signaling. J Cell Sci 117(Pt 2):143–153. https://doi.org/10.1242/jcs.00937

    Article  PubMed  CAS  Google Scholar 

  87. Bokoch GM, Knaus UG (2003) NADPH oxidases: not just for leukocytes anymore! Trends Biochem Sci 28(9):502–508. https://doi.org/10.1016/s0968-0004(03)00194-4

    Article  PubMed  CAS  Google Scholar 

  88. Bokoch GM, Diebold BA (2002) Current molecular models for NADPH oxidase regulation by Rac GTPase. Blood 100(8):2692–2696. https://doi.org/10.1182/blood-2002-04-1149

    Article  PubMed  CAS  Google Scholar 

  89. Diebold BA, Bokoch GM (2001) Molecular basis for Rac2 regulation of phagocyte NADPH oxidase. Nat Immunol 2(3):211–215. https://doi.org/10.1038/85259

    Article  PubMed  CAS  Google Scholar 

  90. Benard V, Bohl BP, Bokoch GM (1999) Characterization of Rac and Cdc42 activation in chemoattractant-stimulated human neutrophils using a novel assay for active GTPases. J Biol Chem 274(19):13198–13204

    Article  CAS  PubMed  Google Scholar 

  91. Geijsen N, van Delft S, Raaijmakers JA, Lammers JW, Collard JG, Koenderman L, Coffer PJ (1999) Regulation of p21rac activation in human neutrophils. Blood 94(3):1121–1130

    PubMed  CAS  Google Scholar 

  92. Gao Y, Dickerson JB, Guo F, Zheng J, Zheng Y (2004) Rational design and characterization of a Rac GTPase-specific small molecule inhibitor. Proc Natl Acad Sci U S A 101(20):7618–7623. https://doi.org/10.1073/pnas.0307512101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Roberts AW, Kim C, Zhen L, Lowe JB, Kapur R, Petryniak B, Spaetti A, Pollock JD, Borneo JB, Bradford GB, Atkinson SJ, Dinauer MC, Williams DA (1999) Deficiency of the hematopoietic cell-specific Rho family GTPase Rac2 is characterized by abnormalities in neutrophil function and host defense. Immunity 10(2):183–196

    Article  CAS  PubMed  Google Scholar 

  94. Li S, Yamauchi A, Marchal CC, Molitoris JK, Quilliam LA, Dinauer MC (2002) Chemoattractant-stimulated Rac activation in wild-type and Rac2-deficient murine neutrophils: preferential activation of Rac2 and Rac2 gene dosage effect on neutrophil functions. J Immunol 169(9):5043–5051

    Article  PubMed  Google Scholar 

  95. Abdel-Latif D, Steward M, Macdonald DL, Francis GA, Dinauer MC, Lacy P (2004) Rac2 is critical for neutrophil primary granule exocytosis. Blood 104(3):832–839. https://doi.org/10.1182/blood-2003-07-2624

    Article  PubMed  CAS  Google Scholar 

  96. Abdel-Latif D, Steward M, Lacy P (2005) Neutrophil primary granule release and maximal superoxide generation depend on Rac2 in a common signalling pathway. Can J Physiol Pharmacol 83(1):69–75

    Article  CAS  PubMed  Google Scholar 

  97. Park HH (2013) Structural basis of membrane trafficking by Rab family small G protein. Int J Mol Sci 14(5):8912–8923. https://doi.org/10.3390/ijms14058912

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Zerial M, McBride H (2001) Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2(2):107–117

    Article  CAS  PubMed  Google Scholar 

  99. Deneka M, Neeft M, van der Sluijs P (2003) Regulation of membrane transport by Rab GTPases. Crit Rev Biochem Mol Biol 38(2):121–142

    Article  CAS  PubMed  Google Scholar 

  100. Grosshans BL, Ortiz D, Novick P (2006) Rabs and their effectors: achieving specificity in membrane traffic. Proc Natl Acad Sci U S A 103(32):11821–11827. https://doi.org/10.1073/pnas.0601617103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Geppert M, Goda Y, Stevens CF, Sudhof TC (1997) The small GTP-binding protein Rab3A regulates a late step in synaptic vesicle fusion. Nature 387(6635):810–814. https://doi.org/10.1038/42954

    Article  PubMed  CAS  Google Scholar 

  102. Regazzi R, Ravazzola M, Iezzi M, Lang J, Zahraoui A, Andereggen E, Morel P, Takai Y, Wollheim CB (1996) Expression, localization and functional role of small GTPases of the Rab3 family in insulin-secreting cells. J Cell Sci 109(Pt 9):2265–2273

    PubMed  CAS  Google Scholar 

  103. Stinchcombe JC, Barral DC, Mules EH, Booth S, Hume AN, Machesky LM, Seabra MC, Griffiths GM (2001) Rab27a is required for regulated secretion in cytotoxic T lymphocytes. J Cell Biol 152(4):825–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Chaudhuri S, Kumar A, Berger M (2001) Association of ARF and Rabs with complement receptor type-1 storage vesicles in human neutrophils. J Leukoc Biol 70(4):669–676

    PubMed  CAS  Google Scholar 

  105. Nishio H, Suda T, Sawada K, Miyamoto T, Koike T, Yamaguchi Y (1999) Molecular cloning of cDNA encoding human Rab3D whose expression is upregulated with myeloid differentiation. Biochim Biophys Acta 1444(2):283–290

    Article  CAS  PubMed  Google Scholar 

  106. Pombo I, Martin-Verdeaux S, Iannascoli B, Le Mao J, Deriano L, Rivera J, Blank U (2001) IgE receptor type I-dependent regulation of a Rab3D-associated kinase: a possible link in the calcium-dependent assembly of SNARE complexes. J Biol Chem 276(46):42893–42900

    Article  CAS  PubMed  Google Scholar 

  107. Lippincott-Schwartz J (2013) Membrane traffic and compartmentalization within the secretory pathway. In: Molecular biology of membrane transport disorders. Springer Science & Business Media, Boston

    Google Scholar 

  108. Riedel D, Antonin W, Fernandez-Chacon R, Alvarez de Toledo G, Jo T, Geppert M, Valentijn JA, Valentijn K, Jamieson JD, Sudhof TC, Jahn R (2002) Rab3D is not required for exocrine exocytosis but for maintenance of normally sized secretory granules. Mol Cell Biol 22(18):6487–6497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Perskvist N, Roberg K, Kulyte A, Stendahl O (2002) Rab5a GTPase regulates fusion between pathogen-containing phagosomes and cytoplasmic organelles in human neutrophils. J Cell Sci 115(Pt 6):1321–1330

    PubMed  CAS  Google Scholar 

  110. Duclos S, Diez R, Garin J, Papadopoulou B, Descoteaux A, Stenmark H, Desjardins M (2000) Rab5 regulates the kiss and run fusion between phagosomes and endosomes and the acquisition of phagosome leishmanicidal properties in RAW 264.7 macrophages. J Cell Sci 113(Pt 19):3531–3541

    PubMed  CAS  Google Scholar 

  111. Fratti RA, Backer JM, Gruenberg J, Corvera S, Deretic V (2001) Role of phosphatidylinositol 3-kinase and Rab5 effectors in phagosomal biogenesis and mycobacterial phagosome maturation arrest. J Cell Biol 154(3):631–644. https://doi.org/10.1083/jcb.200106049

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Schroder A, Kland R, Peschel A, von Eiff C, Aepfelbacher M (2006) Live cell imaging of phagosome maturation in Staphylococcus aureus infected human endothelial cells: small colony variants are able to survive in lysosomes. Med Microbiol Immunol 195(4):185–194. https://doi.org/10.1007/s00430-006-0015-0

    Article  PubMed  Google Scholar 

  113. Singh RK, Furze RC, Birrell MA, Rankin SM, Hume AN, Seabra MC (2014) A role for Rab27 in neutrophil chemotaxis and lung recruitment. BMC Cell Biol 15:39. https://doi.org/10.1186/s12860-014-0039-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Sailem H, Bousgouni V, Cooper S, Bakal C (2014) Cross-talk between Rho and Rac GTPases drives deterministic exploration of cellular shape space and morphological heterogeneity. Open Biol 4:130132. https://doi.org/10.1098/rsob.130132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Stultiens A, Ho TT, Nusgens BV, Colige AC, Deroanne CF (2012) Rho proteins crosstalk via RhoGDIα: at random or hierarchically ordered? Commun Integr Biol 5(1):99–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Nobes CD, Hall A (1995) Rho, Rac, and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81(1):53–62

    Article  CAS  PubMed  Google Scholar 

  117. Rosenfeldt H, Castellone MD, Randazzo PA, Gutkind JS (2006) Rac inhibits thrombin-induced Rho activation: evidence of a Pak-dependent GTPase crosstalk. J Mol Signal 1:8. https://doi.org/10.1186/1750-2187-1-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Mikoshiba K, Lajtha A (2009) Handbook of neurochemistry and molecular neurobiology: neural signaling mechanisms. Springer Science & Business Media, Boston

    Google Scholar 

  119. Sollner T, Whiteheart SW, Brunner M, Erdjument-Bromage H, Geromanos S, Tempst P, Rothman JE (1993) SNAP receptors implicated in vesicle targeting and fusion. Nature 362(6418):318–324

    Article  CAS  PubMed  Google Scholar 

  120. Sutton RB, Fasshauer D, Jahn R, Brunger AT (1998) Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 395(6700):347–353. https://doi.org/10.1038/26412

    Article  PubMed  CAS  Google Scholar 

  121. Chen YA, Scales SJ, Patel SM, Doung YC, Scheller RH (1999) SNARE complex formation is triggered by Ca2+ and drives membrane fusion. Cell 97(2):165–174

    Article  CAS  PubMed  Google Scholar 

  122. Binz T, Sikorra S, Mahrhold S (2010) Clostridial neurotoxins: mechanism of SNARE cleavage and outlook on potential substrate specificity reengineering. Toxins (Basel) 2(4):665–682. https://doi.org/10.3390/toxins2040665

    Article  CAS  Google Scholar 

  123. Schiavo G, Matteoli M, Montecucco C (2000) Neurotoxins affecting neuroexocytosis. Physiol Rev 80(2):717–766

    Article  CAS  PubMed  Google Scholar 

  124. Rossetto O, Gorza L, Schiavo G, Schiavo N, Scheller RH, Montecucco C (1996) VAMP/synaptobrevin isoforms 1 and 2 are widely and differentially expressed in nonneuronal tissues. J Cell Biol 132(1–2):167–179

    Article  CAS  PubMed  Google Scholar 

  125. Ravichandran V, Chawla A, Roche PA (1996) Identification of a novel syntaxin- and synaptobrevin/VAMP-binding protein, SNAP-23, expressed in non-neuronal tissues. J Biol Chem 271(23):13300–13303

    Article  CAS  PubMed  Google Scholar 

  126. Martin-Martin B, Nabokina SM, Lazo PA, Mollinedo F (1999) Co-expression of several human syntaxin genes in neutrophils and differentiating HL-60 cells: variant isoforms and detection of syntaxin 1. J Leukoc Biol 65(3):397–406

    Article  CAS  PubMed  Google Scholar 

  127. Martin-Martin B, Nabokina SM, Blasi J, Lazo PA, Mollinedo F (2000) Involvement of SNAP-23 and syntaxin 6 in human neutrophil exocytosis. Blood 96(7):2574–2583

    PubMed  CAS  Google Scholar 

  128. Mollinedo F, Martin-Martin B, Calafat J, Nabokina SM, Lazo PA (2003) Role of vesicle-associated membrane protein-2, through Q-soluble N-ethylmaleimide-sensitive factor attachment protein receptor/R-soluble N-ethylmaleimide-sensitive factor attachment protein receptor interaction, in the exocytosis of specific and tertiary granules of human neutrophils. J Immunol 170(2):1034–1042

    Article  CAS  PubMed  Google Scholar 

  129. Mollinedo F, Calafat J, Janssen H, Martin-Martin B, Canchado J, Nabokina SM, Gajate C (2006) Combinatorial SNARE complexes modulate the secretion of cytoplasmic granules in human neutrophils. J Immunol 177(5):2831–2841

    Article  CAS  PubMed  Google Scholar 

  130. He J, Johnson JL, Monfregola J, Ramadass M, Pestonjamasp K, Napolitano G, Zhang J, Catz SD (2016) Munc13-4 interacts with syntaxin 7 and regulates late endosomal maturation, endosomal signaling, and TLR9-initiated cellular responses. Mol Biol Cell 27(3):572–587. https://doi.org/10.1091/mbc.E15-05-0283

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Johnson JL, He J, Ramadass M, Pestonjamasp K, Kiosses WB, Zhang J, Catz SD (2016) Munc13-4 is a Rab11-binding protein that regulates Rab11-positive vesicle trafficking and docking at the plasma membrane. J Biol Chem 291(7):3423–3438

    Article  CAS  PubMed  Google Scholar 

  132. Ramadass M, Johnson JL, Catz SD (2017) Rab27a regulates GM-CSF-dependent priming of neutrophil exocytosis. J Leukoc Biol 101(3):693–702. https://doi.org/10.1189/jlb.3AB0416-189RR

    Article  PubMed  CAS  Google Scholar 

  133. Steegmaier M, Yang B, Yoo JS, Huang B, Shen M, Yu S, Luo Y, Scheller RH (1998) Three novel proteins of the syntaxin/SNAP-25 family. J Biol Chem 273(51):34171–34179

    Article  CAS  PubMed  Google Scholar 

  134. Zeng Q, Subramaniam VN, Wong SH, Tang BL, Parton RG, Rea S, James DE, Hong W (1998) A novel synaptobrevin/VAMP homologous protein (VAMP5) is increased during in vitro myogenesis and present in the plasma membrane. Mol Biol Cell 9(9):2423–2437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Galli T, Zahraoui A, Vaidyanathan VV, Raposo G, Tian JM, Karin M, Niemann H, Louvard D (1998) A novel tetanus neurotoxin-insensitive vesicle-associated membrane protein in SNARE complexes of the apical plasma membrane of epithelial cells. Mol Biol Cell 9(6):1437–1448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Ward DM, Pevsner J, Scullion MA, Vaughn M, Kaplan J (2000) Syntaxin 7 and VAMP-7 are soluble N-ethylmaleimide-sensitive factor attachment protein receptors required for late endosome-lysosome and homotypic lysosome fusion in alveolar macrophages. Mol Biol Cell 11(7):2327–2333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Hibi T, Hirashima N, Nakanishi M (2000) Rat basophilic leukemia cells express syntaxin-3 and VAMP-7 in granule membranes. Biochem Biophys Res Commun 271(1):36–41

    Article  CAS  PubMed  Google Scholar 

  138. Advani RJ, Yang B, Prekeris R, Lee KC, Klumperman J, Scheller RH (1999) VAMP-7 mediates vesicular transport from endosomes to lysosomes. J Cell Biol 146(4):765–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Paumet F, Le Mao J, Martin S, Galli T, David B, Blank U, Roa M (2000) Soluble NSF attachment protein receptors (SNAREs) in RBL-2H3 mast cells: functional role of syntaxin 4 in exocytosis and identification of a vesicle-associated membrane protein 8-containing secretory compartment. J Immunol 164(11):5850–5857

    Article  CAS  PubMed  Google Scholar 

  140. Mullock BM, Smith CW, Ihrke G, Bright NA, Lindsay M, Parkinson EJ, Brooks DA, Parton RG, James DE, Luzio JP, Piper RC (2000) Syntaxin 7 is localized to late endosome compartments, associates with Vamp 8, and is required for late endosome-lysosome fusion. Mol Biol Cell 11(9):3137–3153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Polgar J, Chung SH, Reed GL (2002) Vesicle-associated membrane protein 3 (VAMP-3) and VAMP-8 are present in human platelets and are required for granule secretion. Blood 100(3):1081–1083

    Article  CAS  PubMed  Google Scholar 

  142. Lacy P (2005) The role of Rho GTPases and SNAREs in mediator release from granulocytes. Pharmacol Ther 107(3):358–376

    Article  CAS  PubMed  Google Scholar 

  143. Naegelen I, Plançon S, Nicot N, Kaoma T, Muller A, Vallar L, Tschirhart EJ, Bréchard S (2015) An essential role of syntaxin 3 protein for granule exocytosis and secretion of IL-1α, IL-1β, IL-12b, and CCL4 from differentiated HL-60 cells. J Leukoc Biol 97(3):557–571. https://doi.org/10.1189/jlb.3A0514-254RR

    Article  PubMed  CAS  Google Scholar 

  144. Gilman-Sachs A, Tikoo A, Akman-Anderson L, Jaiswal M, Ntrivalas E, Beaman K (2015) Expression and role of a2 vacuolar-ATPase (a2V) in trafficking of human neutrophil granules and exocytosis. J Leukoc Biol 97(6):1121–1131. https://doi.org/10.1189/jlb.3A1214-620RR

    Article  PubMed  CAS  Google Scholar 

  145. Zhang D, Marlin MC, Liang Z, Ahmad M, Ashpole NM, Sonntag WE, Zhao ZJ, Li G (2016) The protein tyrosine phosphatase MEG2 regulates the transport and signal transduction of tropomyosin receptor kinase A. J Biol Chem 291(46):23895–23905. https://doi.org/10.1074/jbc.M116.728550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Huynh H, Bottini N, Williams S, Cherepanov V, Musumeci L, Saito K, Bruckner S, Vachon E, Wang X, Kruger J, Chow CW, Pellecchia M, Monosov E, Greer PA, Trimble W, Downey GP, Mustelin T (2004) Control of vesicle fusion by a tyrosine phosphatase. Nat Cell Biol 6(9):831–839. https://doi.org/10.1038/ncb1164

    Article  PubMed  CAS  Google Scholar 

  147. Hartwig JH, Thelen M, Rosen A, Janmey PA, Nairn AC, Aderem A (1992) MARCKS is an actin filament crosslinking protein regulated by protein kinase C and calcium-calmodulin. Nature 356(6370):618–622. https://doi.org/10.1038/356618a0

    Article  PubMed  CAS  Google Scholar 

  148. Takashi S, Park J, Fang S, Koyama S, Parikh I, Adler KB (2006) A peptide against the N-terminus of myristoylated alanine-rich C kinase substrate inhibits degranulation of human leukocytes in vitro. Am J Respir Cell Mol Biol 34(6):647–652. https://doi.org/10.1165/rcmb.2006-0030RC

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Navegantes KC, de Souza Gomes R, Pereira PAT, Czaikoski PG, Azevedo CHM, Monteiro MC (2017) Immune modulation of some autoimmune diseases: the critical role of macrophages and neutrophils in the innate and adaptive immunity. J Transl Med 15(1):36. https://doi.org/10.1186/s12967-017-1141-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Dib K, Perecko T, Jenei V, McFarlane C, Comer D, Brown V, Katebe M, Scheithauer T, Thurmond RL, Chazot PL, Ennis M (2014) The histamine H4 receptor is a potent inhibitor of adhesion-dependent degranulation in human neutrophils. J Leukoc Biol 96(3):411–418. https://doi.org/10.1189/jlb.2AB0813-432RR

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Deree J, Lall R, Melbostad H, Grant M, Hoyt DB, Coimbra R (2006) Neutrophil degranulation and the effects of phosphodiesterase inhibition. J Surg Res 133(1):22–28. https://doi.org/10.1016/j.jss.2006.02.031

    Article  PubMed  CAS  Google Scholar 

  152. Uriarte SM, Rane MJ, Merchant ML, Jin S, Lentsch AB, Ward RA, McLeish KR (2013) Inhibition of neutrophil exocytosis ameliorates acute lung injury in rats. Shock 39(3):286–292. https://doi.org/10.1097/SHK.0b013e318282c9a1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paige Lacy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Felix, L.C., Almas, S., Lacy, P. (2018). Regulatory Mechanisms in Neutrophil Degranulation. In: Riccardi, C., Levi-Schaffer, F., Tiligada, E. (eds) Immunopharmacology and Inflammation. Springer, Cham. https://doi.org/10.1007/978-3-319-77658-3_8

Download citation

Publish with us

Policies and ethics