Skip to main content
Log in

Cell surface glycosyl transferase activities in liver cells of developing chicken embryos

  • General and Review Articles
  • a. general articles
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

The cell surface of embryonic chick liver cells contains transferases for mannose, fucose, galactose, N-acetyl-glucosamine and N-acetyl-neuraminic acid. Liver cells obtained by trypsin-dissociation of the tissue use the corresponding exogenous sugar nucleotides as substrates. The activities of the enzymes tested do not depend neither on the dissociation procedure nor onde novo protcin synthesis. They vary considerably during development of the embryos, reaching maximal values at the 8th ± 1 day and at the 12th ± 1 day. Glycoproteins are the final stable endogenous acceptors for all sugars. Mannose transfer proceeds via a two or multistep reaction sequence. In a first step labile lipophilic intermediates are formed. Mannose can be liberated by treating the intermediates with 0.1n HCI at 100°C. In a second reaction step mannose becomes attached to glycoproteins. From embryonic chick liver cells a glycopeptide fraction has been obtained by pronase digestion followed by several purification steps. The purified glycopeptides inhibit all transferase systems and act as exogenous acceptors for mannose transfered from exogenous GDP-mannose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Roth, S., McGuire, E. J., and Roseman, S., J. Cell Biol. 51, 536, 1971.

    Google Scholar 

  2. Roth, S. and White, D., Proc. Nat. Acad. Sci. U.S.A. 69, 485, 1972.

    Google Scholar 

  3. Roseman, S., in Chemistry and Physics of Lipids pp. 270–297; North Holland Publishing Co., Amsterdam, 1970.

    Google Scholar 

  4. Arnold, D., Hommel, E., and Risse, H. J., Biochem. Biophys. Res. Commun. 54, 100, 1973.

    Google Scholar 

  5. Caccam, J. F., Jackson, J. J., and Eylar, E. H., Biochem. Biophys. Res. Commun. 35, 505, 1969.

    Google Scholar 

  6. Richards, J. B. and Hemming, F. W., Biochem. J. 130, 77, 1972.

    Google Scholar 

  7. Behrens, N. H., Carminatti, H., Staneloni, R. J., Leloir, L. F., and Cantarella, A. I., Proc. Nat. Acad. Sci. U.S.A. 70, 3390, 1973.

    Google Scholar 

  8. Maestri, N. and de Luca, L., Biochem. Biophys. Res. Commun. 53, 1344, 1973.

    Google Scholar 

  9. Sanford, J. B. and Rosenberg, M. D., Biochem. Biophys. Acta, 288, 333, 1972.

    Google Scholar 

  10. Green, A. A. and Newell, P. C., Biochem. J. 140, 313, 1974.

    Google Scholar 

  11. Morré, D. J., Methods in Enzymology XXII, 138, 1971.

    Google Scholar 

  12. Spiro, R. G., J. Biol. Chem. 237, 382, 1962.

    Google Scholar 

  13. Spiro, R. G., J. Biol. Chem. 240, 1603, 1965.

    Google Scholar 

  14. Buck, Cl. A., Glick, M. C., and Warren, L., Biochemistry 9, 4567, 1970.

    Google Scholar 

  15. Warren, L. and Glick, M. C., Biomembranes Vol 1, 271; Plenum Press, New York, 1971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arnold, D., Hommel, E. & Risse, HJ. Cell surface glycosyl transferase activities in liver cells of developing chicken embryos. Mol Cell Biochem 10, 81–95 (1976). https://doi.org/10.1007/BF01742202

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01742202

Keywords

Navigation