Skip to main content
Log in

Innervation of the metathoracic femoral chordotonal organ ofLocusta migratoria

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

The locust metathoracic femoral chordotonal organ is the largest sense organ in the hind leg. It has been intensively studied, and used as a model input system in studies of central integration of proprioceptive information. We have used electron microscopy, as well as whole nerve and single axon cobalt backfilling to show that previous descriptions of the metathoracic femoral chordotonal organ have failed to recognize a substantial group of small neurons distal to the known cell bodies. This distal group increases the number of neurons known to be present in the organ from a previous maximum of 55 to an average of 92. The axons of the distal neurons form a bundle separate from those of the proximal cells, suggesting that the distal neuron group is the homologue of the distinct proximal scoloparium of the pro- and mesothoracic femoral chordotonal organs. In the light of these findings several earlier studies of locust neurobiology should be re-examined. Future investigations also need to recognize the complexity of the metathoracic femoral chordotonal organ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bacon JP, Altmann JS (1977) A silver intensification method for cobalt-filled neurones in wholemount preparations. Brain Res 138:359–363

    PubMed  Google Scholar 

  • Ball EE (1981) Structure of the auditory system of the wetaHemideina crassidens (Blanchard 1851) (Orthoptera, Ensifera, Gryllacridoidea, Stenopelmatidae). 2. Ultrastructure of the auditory sensilla. Cell Tissue Res 217:345–359

    PubMed  Google Scholar 

  • Bässler U (1983) Neural basis of elementary behavior in stick insects. Studies of Brain Function, vol 10. Springer, Berlin Heidelberg New York, 169 pp

    Google Scholar 

  • Bässler U (1979) Interactions of central and peripheral mechanisms during walking in first instar stick insects,Extatosoma tiaratum. Physiol Entomol 4:193–199

    Google Scholar 

  • Bräunig P (1985) Strand receptors associated with the femoral chordotonal organs of locust legs. J Exp Biol 116:331–341

    Google Scholar 

  • Burns MD (1974) Structure and physiology of the locust femoral chordotonal organ. J Insect Physiol 20:1319–1339

    PubMed  Google Scholar 

  • Burrows M (1987) Parallel processing of proprioceptive signals by spiking local interneurons and motor neurons in the locust. J Neurosci 7 [4]:1064–1080

    PubMed  Google Scholar 

  • Burrows M (1988) Responses of spiking local interneurones in the locust to proprioceptive signals from the femoral chordotonal organ. J Comp Physiol [A] 164:207–217

    Google Scholar 

  • Burrows M, Laurent GJ, Field LH (1988) Proprioceptive inputs to nonspiking local interneurons contribute to local reflexes of a locust hindleg. J Neurosci 8:3085–3093

    PubMed  Google Scholar 

  • Büschges A (1989) Processing of sensory input from the femoral chordotonal organ by spiking interneurones of stick insects. J Exp Biol 144:81–111

    Google Scholar 

  • Debaissieux P (1938) Organes scolopidiaux des pattes d'insectes. II. La cellule 47:79–202

    Google Scholar 

  • Eggers F (1928) Die stiftführenden Sinnesorgane. Morphologie und Physiologie der chordotonalen und tympanalen Sinnesapparate der Insekten. Zoologische Bausteine 2:1–354

    Google Scholar 

  • Field LH, Burrows M (1982) Reflex effects of the femoral chordotonal organ upon leg motor neurones of the locust. J Exp Biol 101:265–285

    Google Scholar 

  • Field LH, Pflüger HJ (1989) The femoral chordotonal organ: A bifunctional orthopteran (Locusta migratoria) sense organ? Comp Biochem Physiol 93A:729–743

    Google Scholar 

  • Field LH, Rind FC (1981) A single insect chordotonal organ mediates inter- and intra-segmental leg reflexes. Comp Biochem Physiol 68A:99–102

    Google Scholar 

  • Füller H, Ernst A (1973) Die Ultrastruktur der femoralen Chordotonalorgane vonCarausius morosus Br. Zool Jb Anat 91:574–601

    Google Scholar 

  • Grosch A, Callender F, Petersen M, Cokl A, Kalmring K (1985) Vibration receptors of larvae and imagines in locusts: Location on the legs, central projections and physiology. In: Kalmring K, Elsner N (eds) Acoustical & vibrational communication in insects. Paul Parey, Hamburg, pp 151–161

    Google Scholar 

  • Hofmann T, Koch UT (1985) Acceleration receptors in the femoral chordotonal organ in the stick insectCuniculina impigra. J Exp Biol 114:225–237

    Google Scholar 

  • Hofmann T, Koch UT, Bässler U (1985) Physiology of the femoral chordotonal organ in the stick insectCuniculina impigra. J Exp Biol 114:207–223

    Google Scholar 

  • Hubbard SJ (1959) Femoral mechanoreceptors in the locust. J Physiol (Lond) 147:8–10

    Google Scholar 

  • Laurent G (1986) Thoracic intersegmental interneurones in the locust with mechanoreceptive inputs from a leg. J Comp Physiol [A] 159:171–186

    Google Scholar 

  • Laurent G (1987) Parallel effects of joint receptors on motor neurones and intersegmental interneurones in the locust. J Comp Physiol [A] 160:341–353

    Google Scholar 

  • Lutz EM, Tyrer NM (1988) Immunohistochemical localization of serotonin and choline acetyltransferase in sensory neurones of the locust. J Comp Neurol 267:335–342

    PubMed  Google Scholar 

  • Macmillan DL, Kien J (1983) Intra- and intersegmental pathways active during walking in the locust. Proc R Soc Lond [Biol] 218:287–308

    Google Scholar 

  • Matheson T (1990) Responses and locations of neurones in the locust metathoracic femoral chordotonal organ. J Comp Physiol [A] (in press)

  • Pflüger HJ, Bräunig P, Hustert R (1988) The organization of mechanosensory neuropiles in locust thoracic ganglia. Philos Trans R Soc Lond [Biol] 321:1–26

    Google Scholar 

  • Slifer EH (1935) Morphology and development of the femoral chordotonal organs ofMelanoplus differentialis (Orthoptera, Acrididae). J Morphol 58:615–637

    Google Scholar 

  • Slifer EH, Sekhon SS (1975) The femoral chordotonal organs of a grasshopper, Orthoptera, Acrididae. J Neurocytol 4:419–438

    PubMed  Google Scholar 

  • Theophilidis G (1986a) The femoral chordotonal organs ofDecticus albifrons (Orthoptera: Tettigoniidae) — I. Structure. Comp Biochem Physiol 84A:529–536

    Google Scholar 

  • Theophilidis G (1986b) The femoral chordotonal organs ofDecticus albifrons (Orthoptera: Tettigoniidae) — II. Function. Comp Biochem Physiol 84A:537–543

    Google Scholar 

  • Usherwood PNR, Runion HI, Campbell JI (1968) Structure and physiology of a chordotonal organ in the locust leg. J Exp Biol 48:305–323

    Google Scholar 

  • Young D (1970) The structure and function of a connective chordotonal organ in the cockroach leg. Philos Trans R Soc Lond [Biol] 256:401–426

    Google Scholar 

  • Zill SN (1985a) Plasticity and proprioception in insects. I. Responses and cellular properties of individual receptors of the locust metathoracic femoral chordotonal organ. J Exp Biol 116:435–461

    PubMed  Google Scholar 

  • Zill SN (1985b) Plasticity and proprioception in insects. II. Modes of reflex action of the locust metathoracic femoral chordotonal organ. J Exp Biol 116:463–480

    PubMed  Google Scholar 

  • Zill SN, Jepson-Innes K (1988) Evolutionary adaptation of a reflex system: sensory hysteresis counters muscle ‘catch’ tension. J Comp Physiol [A] 164:43–48

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matheson, T., Field, L.H. Innervation of the metathoracic femoral chordotonal organ ofLocusta migratoria . Cell Tissue Res. 259, 551–560 (1990). https://doi.org/10.1007/BF01740783

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01740783

Key words

Navigation