Skip to main content
Log in

Does human liver contain estrogen receptors?

A comparative study of estrogen binding in human and rodent liver

Enthält die menschliche Leber Östrogenrezeptoren?

Eine vergleichende Untersuchung der Östrogenbindung in der Leber von Mensch und Ratte

  • Originalien
  • Published:
Klinische Wochenschrift Aims and scope Submit manuscript

Summary

A comparative study of specific estrogen-binding components in human and rat liver cytosol was performed. Similar to rat liver, human liver was found to contain high-affinity-low-capacity cytoplasmic estrogen binders. The apparent dissociation constants (KDS) of the [3H]estradiol-17β-binder complexes were calculated from Scatchard plots and found to be in the range of 0.3–4.3 × 10−9 mol/l and 1.0–3.8 × 10−9 mol/l for rat and human liver cytosol, respectively. For female rat liver cytosol, maximal estrogen-binding capacities (MBCs) of 33–54 fmol/mg protein were calculated. In contrast, cytoplasmic MBCs in human liver were found to be significantly lower (2.0–14.5 fmol/mg protein). In both species, specificity studies of the hepatic 17β-estradiol binders clearly indicated a requirement for estrogens. Similar to estrogen receptors of well-known target organs, the molecular species preferentially binding estrogens in rat and human liver cytosol was found to be a heat-labile protein. The estrogen binders of both species migrated to the anodic receptor region of agar gels. In contrast to rat liver cytosol, the anodic estrogen binding of which is exclusively specific, human liver cytosol exhibits only a small proportion of receptorlike binding drafted on a high background of nonspecific hormone cytosol interactions. In low-salt sucrose gradients, the estrophilic entities of rat and human liver sedimented at 4–5 S and 8–9 S. However, the ratio of 4–5S and 8–9S binding is reversed in the two species. Whereas in man the estrophilic macromolecules predominantly sediment at 4–5S, in the female rat 8–9S binding is favored. Sodium molybdate, an inhibitor of receptor degradation, failed to improve 8–9S estrogen binding in human liver cytosol. In mixed-cytosol experiments (human liver/calf uterus) it could be demonstrated that steroid degradation by hepatic cytosol is not responsible for the low estrogen binding capacities of human liver. It may be concluded that human liver contains estrogen binding components, which in some aspects resemble estrogen receptors. The low concentration of these binding entities does not seem to favor the hypothesis of an important direct regulatory control of estrogens on human liver by the classic receptor-mediated mechanism.

Zusammenfassung

In einer vergleichenden Studie wurde Lebercytosol von Mensch und Ratte auf die Anwesenheit spezifisch östrogenbindender Komponenten hin untersucht. Ähnlich wie in der Rattenleber konnten auch in der menschlichen Leber hochaffine sättigbare Östrogenbinder nachgewiesen werden. Die nach der Methode von Scatchard berechneten Dissoziationskonstanten (KD's der [3H]17β-Östradiol-Binder-Komplexe) lagen bei der Rattenleber im Bereich von 0,3–4,3 × 10−9 mol/l, bei der menschlichen Leber im Bereich von 1,0–3,8 × 10−9 mol/l. Die maximale Östrogenbindungskapazität (MBC) des Rattenleber-cytosols lag zwischen 33 und 54 fmol/mg Protein. Im Gegensatz dazu wurden für die menschliche Leber deutlich geringere MBC-Werte ermittelt (2,0–14,5 fmol/mg Protein). Untersuchungen der Bindungsspezifität des hepatischen 17β-Östradiolbinders zeigten in beiden Spezies eine eindeutige Präferenz für Östrogene. Ähnlich wie Östrogenrezeptoren aus bekannten Zielorganen sind die hepatischen Östrogenbinder von Ratte und Mensch thermolabile Proteine. Die Östrogenbinder beider Species lassen sich bei der Agargel-Elektrophorese in der anodischen Rezeptorregion nachweisen. Während beim Rattenlebercytosol die anodische Östrogenbindung ausschließlich spezifisch ist, findet sich beim menschlichen Lebercytosol neben spezifischer (rezeptorähnlicher) anodischer Bindung ein hoher Anteil unspezifischer Hormonbindung. Bei Saccharosedichtegradienten-Zentrifugation sedimentieren die hepatischen östrophilen Proteine beider Species im Bereich von 4–5S und 8–9S. Allerdings ist das Verhältnis von 4–5S zu 8–9S-Bindung in beiden Species unterschiedlich. Während beim Menschen die östrophilen Makromoleküle hauptsächlich mit 4–5S sedimentieren, überwiegt bei der weiblichen Ratte die 8–9S-Bindung. Durch Natriummolybdat, einem Hemmstoff der Rezeptorproteolyse, ließ sich die Konzentration der 8–9S Östrogenbinder im menschlichen Lebercytosol nicht erhöhen. In Cytosol-Mischexperimenten (menschliche Leber/Kälberuterus) konnte nachgewiesen werden, daß die niedrige Östrogenbindungskapazität des menschlichen Lebercytosols nicht auf Steroidabbau zurückzuführen ist. Die Untersuchungen legen die Schlußfolgerung nahe, daß die menschliche Leber eine östrogenbindende Komponente enthält, die in einigen Aspekten einem Östrogenrezeptor ähnelt. Die niedrige Konzentration dieser Bindungsstellen spricht gegen einen direkten regulatorischen Einfluß von Östrogenen auf die menschliche Leber über einen klassischen Rezeptormechanismus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews WC (1977) Oral contraceptives and vascular thrombosis. South Med J 70:519–520

    Google Scholar 

  2. Arias F, Warren JC (1971) An estrophilic macromolecule in chicken liver cytosol. Biochim Biophys Acta 230:550–559

    Google Scholar 

  3. Bojar H, Balzer K, Dreyfürst R, Staib W, Wittliff JL (1976) Identification and partial characterization of specific oestrogenbinding components in human kidney. J Clin Chem Clin Biochem 14:515–520

    Google Scholar 

  4. Bojar H, Schütte J, Staib W (1982) Oestrogen receptors in rat liver: Molecular characteristics, sex differences, cellular distribution, endocrine control. (Submitted)

  5. Bojar H, Staib W, Beck K, Pilaski J (1980) Investigation on the thermostability of steroid hormone receptors in lyophilized calf uterine tissue powder. Cancer 46:2770–2774

    Google Scholar 

  6. Cain MD, Walters WA, Catt KJ (1971) Effects of oral contraceptive therapy on the renin-angiotensin system. J Clin Endocrinol 33:671–676

    Google Scholar 

  7. Chamnes GC, Costlow ME, McGuire WLB (1975) Estrogen receptor in rat liver and its dependence on prolactin. Steroids 26:363–371

    Google Scholar 

  8. Christopherson WM, Mays ET (1977) Liver tumours and contraceptive steroids: Experience with the first one hundred registry patients. J Cancer Inst 58:167–170

    Google Scholar 

  9. Conrad J, Samama M, Salomon Y (1972) Antithrombin III and the oestrogen content of combined oestro-progestagen contraceptives. Lancet 2:1148–1149

    Google Scholar 

  10. Danzo BJ, Krishnamurthy V, Eller BC (1977) High affinity estrogen binding by rabbit liver. Biochim Biophys Acta 500:310–321

    Google Scholar 

  11. Duffy MJ, Duffy GJ (1978) Estradiol receptors in human liver. J Steroid Biochem 9:233–235

    Google Scholar 

  12. Dugdale M, Masi AT (1970) Hormonal contraception and thromboembolic disease: Effects of the oral contraceptives on hemostatic mechanism. J Chronic Dis 23:775–790

    Google Scholar 

  13. Editorial (1974) Predisposition to thrombosis. Lancet 2:1430–1431

    Google Scholar 

  14. Edmondson HA, Henderson B, Benton B (1976) Liver-cell adenomas associated with use of oral contraceptives. N Engl J Med 294:470–472

    Google Scholar 

  15. Eisenfeld AJ, Weinberger RAM, Haselbacher G, Halpern K (1976) Estrogen receptor in the mammalian liver. Science 191:862–865

    Google Scholar 

  16. Erdos T, Bessada R, Best-Belpomme M, Fries J, Gospodarowicz D, Menahem M, Reti E, Veron A (1970) Studies on the uterine cytoplasmic “estradiol-receptor”. In: Raspé G (ed) Advances in the biosciences, vol 7. Pergamon Press, Vieweg, Oxford Edinburgh New York, pp 119–131

    Google Scholar 

  17. Glassberg AB, Rosenbaum EH (1976) Oral contraceptives and malignant hepatoma. Lancet 1:479

    Google Scholar 

  18. Jensen EV, DeSombre ER (1977) Steroid hormone receptors in breast cancer. In: Pasqualini JR (ed) Modern pharmacologytoxicology 8, II-Receptors and mechanism of action of steroid hormones. Marcel Dekker, New York, Basel, pp 569–601

    Google Scholar 

  19. Kaulhausen H, Klingsiek L (1976) Klinik der Hypertonie unter kontrazeptiven Steroiden. Fortschr Med 94:2005–2013

    Google Scholar 

  20. Korenman SG (1968) Radio-ligand binding assay of specific estrogens using a soluble uterine macromolecule. J Clin Endocrinol Metab 28:127–130

    Google Scholar 

  21. Lowry OH, Rosebrought AL, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Google Scholar 

  22. McDonald JS, Lippmann ME, Wooley PV, Petrucci PP, Schein PS (1978) Hepatic estrogen and progesterone receptors in an estrogen-associated hepatic neoplasm. Cancer Chemother Pharmacol 1:135–138

    Google Scholar 

  23. Mester J, Baulieu EE (1972) Nuclear estrogen receptor of chick liver. Biochim Biophys Acta 261:236–244

    Google Scholar 

  24. Nasjletti A, Masson GMC (1972) Studies on angiotensinogen formation in a liver perfusion system. Circ Res XXX/XXXI [Suppl II] II-187–II-202

    Google Scholar 

  25. Oelkers W, Blümel A, Schöneshöfer M, Schwartz U, Hammerstein J (1976) Effects of ethinylestradiol on the renin-angiotensin-aldosterone-system in women and men. J Clin Endocrinol Metab 43:1036–1040

    Google Scholar 

  26. Rüedi P, Bonvin B (1975) Zur Therapie des Prostatakarzinoms. Ther Umsch 32:97–101

    Google Scholar 

  27. Scatchard G (1949) The attraction of protein for small molecules and ions. Ann NY Acad Sci 51:660–672

    Google Scholar 

  28. Toft D, Gorski J (1966) A receptor molecule for estrogens: Isolation from the rat uterus and preliminary characterization. Proc Natl Acad Sci USA 55:1574–1581

    Google Scholar 

  29. Vana J, Murphy GP, Aronoff BL, Baker HW (1977) Primary liver tumours and oral contraceptives. Results of a survey. JAMA 238:2154–2158

    Google Scholar 

  30. Wagner RK (1972) Characterization and assay of steroid hormone receptors and steroid-binding serum proteins by agar gel electrophoresis at low temperature. Hoppe Seylers Z Physiol Chem 353:1235

    Google Scholar 

  31. Walters WAW, Lim YL (1970) Haemodynamic changes in women taking oral contraceptives. J Obst Gynaecol Br Commonwealth 77:1007–1012

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bojar, H., Schütte, J., Staib, W. et al. Does human liver contain estrogen receptors?. Klin Wochenschr 60, 417–425 (1982). https://doi.org/10.1007/BF01735934

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01735934

Key words

Schlüsselwörter

Navigation