Skip to main content
Log in

Ammonia formation in brain slices

  • Review Articles
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

Brain slices are capable of a sustained formation of ammonia in vitro at a rate of 8–12 ßmoles/g wet wt/h during the first hour of incubation at 37°C. The reaction is aerobic and proceeds only in the absence of glucose or other easily assimilated carbohydrates.

In this article the questions of the origin of the ammonia formed and of the mechanism of its formation are discussed. Evidence is presented suggesting that ammonia is derived from free amino acids, either present initially or released by proteolysis during incubation. Glutamate and γ-aminobutyric acid (GABA) together account for about 50% of the ammonia formed. When brain slices are incubated in the presence of glucose, proteolysis appears to be somewhat reduced but a considerable increase in the level of glutamine indicates a continuation of ammonia formation followed by ammonia disposal in reactions leading to the synthesis of glutamine.

Amino acids added to the incubation medium cannot be utilized by brain slices as sources of ammonia. It is suggested that the endogenous amino acids which serve as ammonia precursors occur in a compartment not readily accessible to extracellular amino acids. This compartment probably consists largely of neurons.

Glutamic acid is metabolized in brain either by transamination or by oxidative deamination. It is assumed that the choice between these two pathways is regulated mainly by the level of α-oxoglutarate and by the redox state of the mitochondrial NAD couple. A lowering of the steady state level of α-oxoglutarate, such as may be expected in the absence of glucose, would result in the oxidative deamination of glutamate. A significant role of glutamate dehydrogenase in the ammonia formation of brain slices is shown by the fact that a series of inhibitors of glutamate dehydrogenase also have an inhibitory effect on the ammonia formation of brain slices. Hadacidin, a specific inhibitor of adenylosuccinate synthetase, was also found to inhibit the ammonia formation of brain slices but to be only about half as efficient as inhibitors of glutamate dehydrogenase. The effects of hadacidin and 5-bromofuroate, an inhibitor of glutamate dehydrogenase, are additive. This is interpreted as indicating a minor involvement of the purine nucleotide cycle in the mechanism of ammonia release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Weil-Malherbe, in Neurochemistry (2nd. ed., K. A. C. Elliott, I. H. Page, and J. H. Quastel, editors) pp 321–330, C. C. Thomas, Springfield, Illinois (1962).

    Google Scholar 

  2. R. Vrba, Rev. Czechosl. Med. 3, 1–26 (1957).

    Google Scholar 

  3. Y. Tsukada, in Handbook of Neurochemistry (A. Lajtha, editor) Vol. V, pp 215–233, Plenum Press, New York (1971).

    Google Scholar 

  4. D. H. Labby, J. H. Hutchinson, J. Stahl, R. Bockel and M. Imler, in Biochemical Clinics, The Liver, 4, 245, R. H. Donnelley Corp., New York (1964).

    Google Scholar 

  5. R. T. Manning, in Biochemical Clinics, The Liver, 4, 225, R. H. Donnelley Corp., New York (1964).

    Google Scholar 

  6. S. Schenker, D. W. McCandles, E. Brophy and M. S. Lewis, J. clin. Invest. 46, 838–848 (1967).

    Google Scholar 

  7. O. Warburg, K. Posner and E. Negelein, Biochem. Z. 152, 309–344 (1924).

    Google Scholar 

  8. F. Dickens and G. D. Greville, Biochem. J. 27, 1123–1133 (1933).

    Google Scholar 

  9. R. O. Loebel, Biochem. Z. 161, 219–239 (1925).

    Google Scholar 

  10. H. Weil-Malherbe and R. H. Green, Biochem. J. 61, 210–218 (1955).

    Google Scholar 

  11. H. Weil-Malherbe and J. Gordon, J. Neurochem. 18, 1659–1672 (1971).

    Google Scholar 

  12. C. Riebeling, Klin. Woch. 10, 554 (1931).

    Google Scholar 

  13. H. Schwarz and H. Dibold, Biochem. Z. 251, 190–198 (1932).

    Google Scholar 

  14. S. R. Guha and J. J. Ghosh, Ann. Biochem. Exp. Med. 19, 67–74 (1959).

    Google Scholar 

  15. S. R. Guha, B. N. Ghosh and J. J. Ghosh, Ann. Biochem. Exp. Med. 19, 255–264 (1959).

    Google Scholar 

  16. G. Takagaki, S. Hirano and Y. Tsukada, Arch. Biochem. Biophys. 68, 196–205 (1957).

    Google Scholar 

  17. M. G. Larrabee, P. Horowicz, W. Stekiel and M. Dolivo, in Metabolism of the Nervous System (D. Richter, editor) pp 208–220, Pergamon Press, London (1957).

    Google Scholar 

  18. H. Waelsch, Lancet II, 1–4 (1949).

    Google Scholar 

  19. H. A. Krebs, L. V. Eggleston and R. Hems, Biochem. J. 44, 159–163 (1949).

    Google Scholar 

  20. H. A. Krebs, Biochem. J. 29, 1951–1969 (1935).

    Google Scholar 

  21. H. Weil-Malherbe, Biochem. J. 30, 665–676 (1936).

    Google Scholar 

  22. H. Weil-Malherbe and A. C. Drysdale, J. Neurochem. 1, 250–255 (1957).

    Google Scholar 

  23. Y. Tsukada and G. Takagaki, Nature 173, 1138–1139 (1954).

    Google Scholar 

  24. G. Acs, R. Balázs and F. B. Straub, Chem. Abstr. 48, 8923 (1954).

    Google Scholar 

  25. R. Vrba, J. Neurochem. 1, 12–17 (1956).

    Google Scholar 

  26. Y. Yoshino and K. A. C. Elliott, Can. J. Biochem. 48, 1175–1178 (1970).

    Google Scholar 

  27. Y. Yoshino and K. A. C. Elliott, Can. J. Biochem. 48, 236–243 (1970).

    Google Scholar 

  28. R. Vrba, J. Folbergr and V. Kanturek, Nature 179, 470–471 (1957).

    Google Scholar 

  29. P. A. Kometiani, Ye. E. Klein, N. V. Gvalia and Ye. G. Gotsiridze, J. Neurochem. 17, 1331–1337 (1970).

    Google Scholar 

  30. G. B. Ansell, R. B. Williams and D. Richter, Biochem. J. 50, XXIX (1952).

    Google Scholar 

  31. E. L. Peters and D. B. Tower, J. Neurochem. 5, 80–90 (1959).

    Google Scholar 

  32. H. Waelsch, in Regional Neurochemistry (S. S. Kety, and J. Elkes, editors) pp 57–64, Pergamon Press, Oxford (1961).

    Google Scholar 

  33. G. Takagaki, S. Berl, D. D. Clarke, D. P. Purpura and H. Waelsch, Nature 189, 326 (1961).

    Google Scholar 

  34. S. Berl, G. Takagaki, D. D. Clarke and H. Waelsch, J. biol. Chem. 237, 2562–2569 (1962).

    Google Scholar 

  35. R. M. O'Neal and R. E. Koeppe, J. Neurochem. 13, 835–847 (1966).

    Google Scholar 

  36. J. E. Cremer, J. Neurochem. 11, 165–185 (1964).

    Google Scholar 

  37. D. Garfinkel, J. biol. Chem. 241, 3918–3929 (1966).

    Google Scholar 

  38. K. Okamoto and J. H. Quastel, Biochem. J. 128, 1117–1124 (1972).

    Google Scholar 

  39. F. Hajós and S. Kerpel-Fronius, J. Cell. Biol. 51, 216–222 (1971).

    Google Scholar 

  40. R. Balázs, A. J. Patel and D. Richter, in Metabolic Compartmentation in the Brain (R. Balázs and J. E. Cremer, editors) pp 167–184, John Wiley and Sons, New York (1972).

    Google Scholar 

  41. S. P. R. Rose, in Metabolic Compartmentation in the Brain (R. Balázs and J. E. Cremer, editors) pp 287–304, John Wiley and Sons, New York (1972).

    Google Scholar 

  42. A. Hamberger, Brain Res. 31, 169–178 (1971).

    Google Scholar 

  43. S. P. R. Rose, J. Neurochem. 17, 809–816 (1970).

    Google Scholar 

  44. A. E. Braunstein, Advances in Enzymology, 19, 335–389 (1957).

    Google Scholar 

  45. P. Borst, Biochim. biophys. Acta 57, 256–269 (1962).

    Google Scholar 

  46. E. A. Jones and H. Gutfreund, Biochem. J. 84, 46–51. (1962)

    Google Scholar 

  47. E. J. DeHaan, J. M. Tager and E. C. Slater (1967) Biochim. biophys. Acta, 131, 1–13 (1967).

    Google Scholar 

  48. H. A. Krebs and D. Bellamy, Biochem. J. 75, 523–529. (1960).

    Google Scholar 

  49. R. J. Haslam and H. A. Krebs, Biochem. J. 88, 566–578 (1963).

    Google Scholar 

  50. H. v. Euler, E. Adler, G. Günther and N. B. Das, Z. physiol. Chem. 254, 61–103 (1938).

    Google Scholar 

  51. H. J. Strecker, Arch. Biochem. Biophys. 46, 128–140 (1953).

    Google Scholar 

  52. P. C. Engel and K. Dalziel, Biochem. J. 105, 691–695 (1967).

    Google Scholar 

  53. R. Vrba, M. K. Gaitonde and D. Richter, J. Neurochem. 9, 465–475 (1962).

    Google Scholar 

  54. R. Balázs and R. J. Haslam, Biochem. J. 94, 131–141 (1965).

    Google Scholar 

  55. O. Gonda and J. H. Quastel, Biochem. J. 84, 394–406 (1962).

    Google Scholar 

  56. A. L. Miller, R. A. Hawkins and R. L. Veech, J. Neurochem. 20, 1393–1400 (1973).

    Google Scholar 

  57. D. H. Williamson, P. Lund and H. A. Krebs, Biochem. J. 103, 514–527 (1967).

    Google Scholar 

  58. D. Veloso, J. V. Passonneau and R. L. Veech, J. Neurochem. 19, 2679–2686 (1972).

    Google Scholar 

  59. R. L. Veech, R. L. Harris, D. Veloso and E. H. Veech, J. Neurochem. 20, 183–188 (1973).

    Google Scholar 

  60. A. L. Miller, R. A. Hawkins and R. L. Veech, In preparation.

  61. H. Weil-Malherbe, Unpublished.

  62. W. S. Caughey, J. D. Smiley and L. Hellerman, J. biol. Chem. 224, 591–607 (1957).

    Google Scholar 

  63. K. S. Rogers, J. biol. Chem. 246, 2004–2009 (1971).

    Google Scholar 

  64. G. Takagaki, S. Hirano and Y. Nagata, J. Neurochem. 4, 124–134 (1959).

    Google Scholar 

  65. H. Weil-Malherbe and J. Gordon, Neuropharmacol. 12, 367–381 (1973).

    Google Scholar 

  66. A. J. Garber, M. Jomain-Baum, L. Salganicoff, E. Farber and R. W. Hanson, J. biol. Chem. 248, 1530–1535 (1973).

    Google Scholar 

  67. P. A. Kometiani and E. E. Klein, Biokhimüa, 21, 389 (1956).

    Google Scholar 

  68. R. Abrams and M. Bentley, Arch. Biochem. Biophys. 58, 109–118 (1955).

    Google Scholar 

  69. C. E. Carter and L. H. Cohen, J. biol. Chem. 222, 17–30 (1956).

    Google Scholar 

  70. I. Lieberman, J. biol. Chem. 223, 327–339 (1956).

    Google Scholar 

  71. A. A. Newton and S. V. Perry, Biochem. J. 74, 127–136 (1960).

    Google Scholar 

  72. C. L. Davey, Arch. Biochem. Biophys. 95, 296–304 (1961)

    Google Scholar 

  73. K. Tornheim and J. M. Lowenstein, J. biol. Chem. 247, 162–169 (1972).

    Google Scholar 

  74. J. M. Lowenstein, Physiol. Rev. 52, 382–414 (1972).

    Google Scholar 

  75. H. C. Buniatian, in Handbook of Neurochemistry (A. Lajtha, editor) Vol. III, pp 399–413, Plenum Press, New York (1970).

    Google Scholar 

  76. J. Abelskov, Biochim. biophys. Acta, 32, 566 (1959).

    Google Scholar 

  77. H. T. Shigeura and C. N. Gordon, J. biol. Chem. 237, 1932–1936 (1962).

    Google Scholar 

  78. S. Berl, S. Puszkin and W. J. Nicklas, Science, 179, 441–446 (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

An invited article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weil-Malherbe, H. Ammonia formation in brain slices. Mol Cell Biochem 4, 31–44 (1974). https://doi.org/10.1007/BF01731101

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01731101

Keywords

Navigation