Skip to main content
Log in

Tolerance of different proteins for amino acid diversity

  • Research Papers
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Summary

Random mutagenesis of genes followed by positive genetic selection in bacteria requires that the variant molecules confer biological activity, and is thus the most demanding approach for generating new functionally active molecules. Furthermore, one can learn much about the protein in question by comparing the population of selected molecules to the library from which they were selected. Described here is a mathematical method designed to guide such comparisons. We use as examples the results of randomization-selection studies of four different proteins. There exists, in general, a positive correlation between the number of amino acid substitutions in a critical region of a protein and the likelihood of inactivation of that protein; a correlation long suspected, but developed here in detail. At this time, we are comparing regions in different proteins and our conclusions must be limited. However, the method presented can serve as a guideline for anticipating the yield of new active mutants in genetic complementation assays based on the extent of randomization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AA:

amino acid

AZT:

3′-azido-3′-deoxythymidine

HIV RT:

human immunodeficiency virus reverse transcriptase

HSV-1 TK:

herpes simplex virus type 1 thymidine kinase

MGMT:

human O6-methylguanine-DNA methyltransferase

MNNG:

N-methyl-N′-nitro-N-nitrosoguanine

Taq pol I:

Thermus aquaticus DNA polymerase I

References

  1. Loeb, L.A.,Unnatural nucleotide sequences in biopharmaceutics, Adv. Pharmacol., 35 (1996) 321–347.

    Google Scholar 

  2. Mills, D.R., Peterson, R.L. and Spiegelman, S.,An extracellular Darwinian experiment with a self-duplicating nucleic acid molecule, Proc. Natl. Acad. Sci. USA, 58 (1967) 217–224.

    Google Scholar 

  3. Joyce, G.F.,RNA evolution and the origins of life, Nature, 338 (1989) 217–224.

    Google Scholar 

  4. Ellington, A.D. and Szostak, J.W.,In vitro selection of RNA molecules that bind specific ligands, Nature, 34 (1990) 818–822.

    Google Scholar 

  5. Tuerk, C. and Gold, L.,Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase, Science, 249 (1990) 505–510.

    Google Scholar 

  6. Bock, L.C., Griffin, L.C., Latham, J.A., Vermaas, E.H. and Toole, J. J.,Selection of single-stranded DNA molecules that bind and inhibit human thrombin, Nature, 355 (1992) 564–566.

    Google Scholar 

  7. Joyce, G.F.,Selective amplification techniques for optimization of ribozyme function, In Murray, J.A.H. (Ed.) Antisense RNA and DNA, Wiley-Liss, New York, NY, U.S.A., 1992, pp. 353–372.

    Google Scholar 

  8. Lehman, N. and Joyce, G.F.,Evolution in vitro of an RNA enzyme with altered metal dependence, Nature, 361 (1993) 182–185.

    Google Scholar 

  9. Lehman, N. and Joyce, G.F.,Evolution in vitro: Analysis of a lineage of ribozymes, Curr. Biol., 3 (1993) 723–734.

    Google Scholar 

  10. Sassanfar, M. and Szostak, J.W.,An RNA motif that binds ATP, Nature, 364 (1993) 550–553.

    Google Scholar 

  11. Wilson, C. and Szostak, J.W.,In vitro evolution of a self-alkylating ribozyme, Nature, 374 (1995) 777–782.

    Google Scholar 

  12. Scott, J.K. and Smith, G.P.,Searching for peptide ligands with an epitope library, Science, 249 (1990) 386–390.

    Google Scholar 

  13. Lerner, R.A., Benkovic, S.J. and Schultz, P.G.,At the crossroads of chemistry and immunology: Catalytic antibodies, Science, 252 (1991) 659–667.

    Google Scholar 

  14. Winter, G. and Milstein, C.,Man-made antibodies, Nature, 349 (1991) 293–299.

    Google Scholar 

  15. Barbas III, C.F., Rosenblum, J.S. and Lerner, R.A.,Direct selection of antibodies that coordinate metals from semisynthetic combinatorial libraries, Proc. Natl. Acad. Sci. USA, 90 (1993) 6385–6389.

    Google Scholar 

  16. Horwitz, M.S.Z. and Loeb, L.A.,Promoters selected from random DNA sequences, Proc. Natl. Acad. Sci. USA, 83 (1986) 7405–7409.

    Google Scholar 

  17. Reidhaar-Olson, J.F. and Sauer, R.T.,Combinatorial cassette mutagenesis as a probe of the informational content of protein sequences, Science, 241 (1988) 53–57.

    Google Scholar 

  18. Dube, D.K., Black, M.E., Munir, K.M. and Loeb, L.A.,Selection of new biologically active molecules from random nucleotide sequences, Gene, 137 (1993) 41–47.

    Google Scholar 

  19. Dube, D.K. and Loeb, L.A.,Mutants generated by the insertion of random oligonucleotides into the active site of the β-lactamase gene, Biochemistry, 28 (1989) 5703–5707.

    Google Scholar 

  20. Munir, K.M., French, D.C., Dube, D.K. and Loeb, L.A.,Permissible amino acid substitutions within the putative nucleoside binding site of herpes simplex virus type 1 encoded thymidine kinase established by random sequence mutagenesis, J. Biol. Chem., 267 (1992) 6584–6589.

    Google Scholar 

  21. Black, M.E., and Loeb, L.A.,Identification of important residues within the putative nucleoside binding site of HSV-1 thymidine kinase by random sequence selection: Analysis of selected mutants in vitro, Biochemistry, 32 (1993) 11618–11626.

    Google Scholar 

  22. Munir, K.M., French, D.C. and Loeb, L.A.,Thymidine kinase mutants obtained by random sequence selection, Proc. Natl. Acad. Sci. USA, 90 (1993) 4012–4016.

    Google Scholar 

  23. Black, M.E., Newcomb, T.G., Wilson, H.-M.P. and Loeb, L.A.,Creation of drug-specific herpes simplex virus type 1 thymidine kinase mutants for gene therapy, Proc. Natl. Acad. Sci. USA, 93 (1996) 3525–3529.

    Google Scholar 

  24. Kim, B., Hathaway, T.R. and Loeb, L.A.,Human immunodeficiency virus reverse transcriptase: Functional mutants obtained by random mutagenesis coupled with genetic selection in Escherichia coli, J. Biol. Chem., 271 (1996) 4872–4878.

    Google Scholar 

  25. Suzuki, M., Baskin, D., Hood, L. and Loeb, L.A.,Random mutagenesis of Thermus aquaticus DNA polymerase I: Concordance of immutable sties in vivo with the crystal structure, Proc. Natl. Acad. Sci. USA, (1996) in press.

  26. Christians, F.C. and Loeb, L.A.,Novel human DNA alkyltransferases obtained by random substitution and genetic selection in bacteria, Proc. Natl. Acad. Sci. USA, 93 (1996) 6124–6128.

    Google Scholar 

  27. Stemmer, W.P.,DNA shuffling by random fragmentation and reassembly: In vitro recombination for molecular evolution, Proc. Natl. Acad. Sci. USA, 91 (1994) 10747–10751.

    Google Scholar 

  28. Stemmer, W.P.,Rapid evolution of a protein in vitro by DNA shuffling, Nature, 370 (1994) 389–391.

    Google Scholar 

  29. Kim, B. and Loeb, L.A.,Human immunodeficiency virus reverse transcriptase substitutes for DNA polymerase I in Escherichia coli, Proc. Natl. Acad. Sci. USA, 92 (1995) 684–688.

    Google Scholar 

  30. Delarue, M., Poch, O., Tordo, N., Moras, D. and Argos, P.,An attempt to unify the structure of polymerases, Protein Eng., 3 (1990) 461–467.

    Google Scholar 

  31. Blanco, L., Bernad, A., Blasco, M.A. and Salas, M.,A general structure for DNA-dependent DNA polymerases [published erratum appeared in Gene, 108 (1991) 165], Gene, 100 (1991) 27–38.

    Google Scholar 

  32. Braithwaite, D.K. and Ito, J.,Compilation, alignment, and phylogenetic relationships of DNA polymerases, Nucleic Acids Res., 21 (1993) 787–802.

    Google Scholar 

  33. Joyce, C.M., Kelley, W.S. and Grindley, N.D.,Nucleotide sequence of the Escherichia coli pol A gene and primary structure of DNA polymerase I, J. Biol. Chem., 257 (1982) 1958–1964.

    Google Scholar 

  34. Lawyer, F.C., Stoffel, S., Saiki, R.K., Myambo, K., Drummond, R. and Gelfand, D.H.,Isolation, characterization, and expression in Escherichia coli of the DNA polymerase gene from Thermus aquaticus, J. Biol. Chem., 264 (1989) 6427–6437.

    Google Scholar 

  35. Ollis, D.L., Brick, P., Hamlin, R., Xuong, N.G. and Steitz, T.A.,Structure of large fragment of Escherichia coli DNA polymerase I complexed with dTMP, Nature, 313 (1985) 762–766.

    Google Scholar 

  36. Kim, Y., Eom, S.H., Wang, J., Lee, D.-S., Suh, S.W. and Steitz, T.A.,Crystal structure of Thermus aquaticus DNA polymerase, Nature, 376 (1995) 612–616.

    Google Scholar 

  37. Korolev, S., Nayal, M., Barnes, W.M., DiCera, E. and Waksman, G.,Crystal structure of the large fragment of Thermus aquaticus DNA polymerase I at 2.5-angstrom resolution: Structural basis for thermostability, Proc. Natl. Acad. Sci. USA, 92 (1995) 9264–9268.

    Google Scholar 

  38. Culver, K.W., Ram, Z., Wallbridge, S., Ishii, H., Oldfield, E.H. and Blaese, R.M.,In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors, Science, 256 (1992) 1550–1552.

    Google Scholar 

  39. Balasubramaniam, N.K., Veerisetty, V. and Gentry, G.A.,Herpesviral deoxythymidine kinases contain a site analogous to the phosphoryl-binding arginine-rich region of porcine adenylate kinase; comparison of secondary structure predictions and conservation, J. Gen. Virol., 71 (1990) 2979–2987.

    Google Scholar 

  40. Joyce, C.M. and Steitz, T.A.,Function and structure relationships in DNA polymerases, Annu. Rev. Biochem., 63 (1994) 777–822.

    Google Scholar 

  41. Klimasauskas, S., Kumar, S., Roberts, R.J. and Cheng, X.,Hhal methyltransferase flips its target base out of the DNA helix, Cell, 76 (1994) 357–369.

    Google Scholar 

  42. Reinisch, K.M., Chen, L., Verdine, G.L. and Lipscomb, W.N.,The crystal structure of HaeIII methyltransferase covalently complexed to DNA: An extrahelical cytosine and rearranged base pairing, Cell, 82 (1995) 143–153.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, M., Christians, F.C., Kim, B. et al. Tolerance of different proteins for amino acid diversity. Mol Divers 2, 111–118 (1996). https://doi.org/10.1007/BF01718708

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01718708

Keywords

Navigation