Skip to main content
Log in

Liquid-phase combinatorial synthesis: In search of small-molecule enzyme mimics

  • Research Papers
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Summary

The applications, advantages and recent advances in liquid-phase combinatorial chemistry using poly(ethyleneglycol) as a soluble polymer support are reviewed. Our recent efforts towards the synthesis of peptide-based catalysts on polyethyleneglycol are reported. The screening of libraries of peptides for catalysis is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Patel, D.V. and Gordon, E.M.,Applications of small-molecule combinatorial chemistry to drug discovery, Drug Discov. Today, 1 (1996) 134–144.

    Google Scholar 

  2. Hsieh-Wilson, L.C., Xiang, X.-D. and Schultz, P.G.,Lessons from the immune system: From catalysis to materials science, Acc. Chem. Res., 29 (1996) 164–170.

    Google Scholar 

  3. Gallop, M.A., Barrett, R.W., Dower, W.J., Fodor, S.P.A. and Gordon, E.M.,Applications of combinatorial technologies to drug discovery. 1. Background and peptide combinatorial libraries, J. Med. Chem., 37 (1994) 1233–1250.

    Google Scholar 

  4. Thompson, L.A. and Ellman, J.A.,Synthesis and applications of small molecule libraries, Chem. Rev., 96 (1996) 555–600.

    Google Scholar 

  5. Janda, K.D.,Tagged versus untagged libraries: Methods for the generation and screening of combinatorial chemical libraries, Proc. Natl. Acad. Sci. USA, 91 (1994) 10779–10785.

    Google Scholar 

  6. Bayer, E.,Towards the chemical synthesis of proteins, Angew. Chem. Int. Ed. Engl., 30 (1991) 113–129.

    Google Scholar 

  7. Han, H., Wolfe, M.M., Brenner, S. and Janda, K.D.,Liquid-phase combinatorial synthesis, Proc. Natl. Acad. Sci. USA, 92 (1995) 6419–6423.

    Google Scholar 

  8. Han, H. and Janda, K.D.,Azatides: Solution and liquid-phase syntheses of a new peptidomimetic, J. Am. Chem. Soc., 118 (1996) 2539–2544.

    Google Scholar 

  9. Janda, K.D.,Catalytic antibodies: The rerouting of chemical reactions, Biochem. Soc. Trans., 21 (1993) 1091–1095.

    Google Scholar 

  10. Janda, K.D., Shevlin, C.G. and Lerner, R.A.,Antibody catalysis of a disfavored chemical transformation, Science, 259 (1993) 490–493.

    Google Scholar 

  11. Perez-Paya, E., Houghten, R.A. and Blondelle, S.E.,Synthetic peptides as binding step based catalytic mimics, Pept. Res., 7 (1994) 286–288.

    Google Scholar 

  12. Menger, F.M., Eliseev, A.V. and Migulin, V.A.,Phosphatase catalysis developed via combinatorial organic chemistry, J. Org. Chem., 60 (1995) 6666–6667.

    Google Scholar 

  13. Kent, S.B.H., Alewood, D., Alewood, P., Baca, M., Jones, A. and Schnolzer, M.,Total chemical synthesis of proteins: Evolution of solid-phase synthetic methods illustrated by total chemical syntheses of the HIV-1 protease, In Epton, R. (Ed.) Innovations and Perspectives in Solid-Phase Synthesis, Intercept, Andover, U.K., 1992.

    Google Scholar 

  14. Atherton, E. and Sheppard, R.C.,Solid-Phase Peptide Synthesis, a Practical Approach, IRL Press, Oxford, U.K., 1989.

    Google Scholar 

  15. Sieber, P. and Iselin, B.,Selektive acidolytische Spaltung von Aralkyloxycarbonyl-Aminoschutzgruppen, Helv. Chim. Acta, 51 (1968) 614–622.

    Google Scholar 

  16. Wang, S.-S. and Merrifield, R.B.,Preparation of some new biphenyl-isopropoxycarbonyl amino acids and their application to the solid-phase synthesis of a tryptophan-containing heptapeptide of bovine parathyroid hormone, Int. J. Pept. Protein Res., 1 (1969) 235–244.

    Google Scholar 

  17. Feinberg, R.S. and Merrifield, R.B.,The synthesis of biphenyliso-propyloxycarbonyl-amino acid salts, Tetrahedron, 28 (1972) 5865–5871.

    Google Scholar 

  18. Sieber, P. and Iselin, B.,Peptidsynthesen unter Verwendung der 2-(p-diphenyl)-isopropyl-oxycarbonyl (DPOC)-Aminoschutzgruppe, Helv. Chim. Acta, 51 (1968) 622–632.

    Google Scholar 

  19. Mutter, M. and Bayer, E.,The liquid-phase method for peptide synthesis, Peptides, 2 (1979) 285–332.

    Google Scholar 

  20. Bayer, E. and Mutter, M.,Liquid-phase synthesis of peptides, Nature, 237 (1972) 512–513.

    Google Scholar 

  21. Shemyakin, M.M., Ovchinnikov, Y.A., Kinyushkin, A.A. and Kozhevnikova, I.V.,Synthesis of peptides in solution on a polymeric support. I. Synthesis of glycylglycyl-l-leucylglycine, Tetrahedron Lett., 27 (1965) 2323–2327.

    Google Scholar 

  22. Geckeler, K.E.,Soluble polymer supports for liquid-phase synthesis, Biopolymers, (1995) 32–79.

  23. Bayer, E. and Mutter, M.,Synthese des biologisch aktiven undecapeptids Substanz P nach der Flussig-Phasen-Methode, Chem. Ber., 107 (1974) 1344–1352.

    Google Scholar 

  24. Bonora, G.M., Biancotto, G., Maffini, M. and Scremin, C.L.,Large-scale, liquid-phase synthesis of oligonucleotides by the phosphoramidite approach, Nucleic Acids Res., 21 (1993) 1213–1217.

    Google Scholar 

  25. Douglas, S.P., Whitfield, D.M. and Krepinsky, J.J.,Polymer-supported solution synthesis of oligosaccharides using a novel versatile linker for the synthesis of d-mannopentaose, a structural unit of d-mannans of pathogenic yeasts, J. Am. Chem. Soc., 117 (1995) 2116–2117.

    Google Scholar 

  26. Pillai, V.N.R., Mutter, M., Bayer, E. and Gatfield, I.,New, easily removable poly (ethylene-glycol) supports for the liquid-phase method of peptide synthesis, J. Org. Chem., 45 (1980) 5364–5370.

    Google Scholar 

  27. Zalipsky, S.,Functionalized poly (ethyleneglycol) for preparation of biologically relevant conjugates, Bioconjugate Chem., 6 (1995) 150–165.

    Google Scholar 

  28. Greenwald, R.B., Pendri, A. and Bolikal, D.,Highly water-soluble taxol derivatives: 7-Polyethylene glycol carbamates and carbonates, J. Org. Chem., 60 (1995) 331–336.

    Google Scholar 

  29. Greenwald, R.B., Pendri, A., Conover, C., Gilbert, C., Yang, R. and Xin, J.,Drug delivery systems 2. Camptothecin 20-O-poly (ethyleneglycol) ester transport forms, J. Med. Chem., 39 (1996) 1938–1940.

    Google Scholar 

  30. Bayer, E., Mutter, M., Uhmann, R., Polster, J. and Mauser, H.,Kinetic studies of the liquid-phase synthesis, J. Am. Chem. Soc., 96 (1974) 7333–7336.

    Google Scholar 

  31. Zalipsky, S., Gilon, C. and Zilkha, A.,Esterification of polyethylene glycols, J. Macromol. Sci. Chem., A21 (1984) 839–845.

    Google Scholar 

  32. Erb, E., Janda, K.D. and Brenner, S.,Recursive deconvolution of combinatorial chemical libraries, Proc. Natl. Acad. Sci. USA, 91 (1994) 11422–11426.

    Google Scholar 

  33. Branden, C. and Tooze, J.,Introduction to Protein Structure, Garland Publishing, New York, NY, U.S.A., 1991.

    Google Scholar 

  34. Jencks, W.P.,Catalysis in Chemistry and Enzymology, Dover Publications, Mineola, NY, U.S.A., 1987.

    Google Scholar 

  35. Fersht, A.,Enzyme structure and mechanism, W.H. Freeman, New York, NY, U.S.A., 1985.

    Google Scholar 

  36. Warshel, A., Naray-Szabo, G., Sussman, F. and Hwang, J.-K.,How do serine proteases really work?, Biochemistry, 28 (1989) 3629–3637.

    Google Scholar 

  37. Cruickshank, P. and Sheehan, J.C.,Synthetic peptide models of enzyme active sites. II.l-Threonyl-l-alanyl-l-seryl-l-histidyl-l-aspartic acid, an active esterase model, J. Am. Chem. Soc., 86 (1963) 2070–2071.

    Google Scholar 

  38. D'Souza, V.T. and Bender, M.L.,Miniature organic models of enzymes, Acc. Chem. Res., 20 (1987) 146–152.

    Google Scholar 

  39. Elmore, D.T. and Smyth, J.J.,The synthesis and bacitracin-catalysed hydrolysis of aryl esters and N-acylamino acids, Biochem. J., 94 (1965) 563–568.

    Google Scholar 

  40. Fridkin, M. and Goren, H.J.,Synthesis and catalytic properties of theheptapeptide l-seryl-l-prolyt-l-cysteinyl-l-seryl-α-l-glutamyl-l-threonyl-l-tyrosine, Eur. J. Biochem., 41 (1974) 273–283.

    Google Scholar 

  41. Katchalski, E., Fasman, G.D., Simons, E., Blout, E.R., Gurd, F.R.N. and Koltun, W.L.,Synthetic histidine-containing polypeptides as catalysts for the hydrolysis of p-nitrophenyl acetate, Arch. Biochem. Biophys., 88 (1960) 361–365.

    Google Scholar 

  42. Kopple, K.D. and Nitecki, D.E.,Reactivity of cyclic peptides. II. Cyclo-l-tyrosyl-l-histidyl and cyclo-l-tyrosyltriglycyl-l-histidyl glycyl, J. Am. Chem. Soc., 84 (1962) 4457–4464.

    Google Scholar 

  43. Mutter, M.,The construction of new proteins and enzymes — A prospect for the future?, Angew. Chem. Int. Ed. Engl., 24 (1985) 639–653.

    Google Scholar 

  44. Nishi, N.,Models of the chymotrypsin active site with the peptides containing histidine, serine and aspartic acid, Pept. Chem., (1978) 151–156.

  45. Photaki, I., Bardakos, V., Lake, A.W. and Lowe, G.,Synthesis and catalytic properties of the pentapeptide, Thr-Ala-Cys-His-Asp, J. Chem. Soc. (C), (1968) 1860–1864.

    Google Scholar 

  46. Photaki, I. and Sakarellou-Daitsiotou, M.,Synthesis and catalytic properties of peptides containing amino acids involved in the active centres of hydrolytic enzymes, J. Chem. Soc. Perkin Trans. I, (1976) 589–591.

    Google Scholar 

  47. Schultz, R.M., Huff, J.P., Anagnostaras, P., Olsher, U. and Blout, E.R.,Synthesis and conformational properties of a synthetic cyclic peptide for the active site of α-chymotrypsin, Int. J. Pept. Protein Res., 19 (1982) 454–469.

    Google Scholar 

  48. Sheehan, J.C., Bennett, G.B. and Schneider, J.A.,Synthetic peptide models of enzyme active sites. III. Stereoselective esterase models, J. Am. Chem. Soc., 88 (1966) 3455–3456.

    Google Scholar 

  49. Sheehan, J.C. and McGregor, D.N.,Synthetic peptide models of enzyme active sites. I. Cyclo-glycyl-l-histidyl-l-serylglycyl-l-histidyl-seryl, J. Am. Chem. Soc., 84 (1962) 3000–3005.

    Google Scholar 

  50. Vorherr, T., Altmann, K.-H. and Mutter, M.,Single-centre model for the active site of α-chymotrypsin, Helv. Chim. Acta, 69 (1986) 410–414.

    Google Scholar 

  51. Eisenthal, R. and Danson, M.J.,Enzyme Assays, A Practical Approach, IRL Press at Oxford University Press, Oxford, U.K., 1993.

    Google Scholar 

  52. Lu, Y. and Felix, A.M.,Pegylated peptides II. Solid-phase synthesis of amino-, carboxy-, and side-chain pegylated peptides, Int. J. Pept. Protein Res., 43 (1994) 127–138.

    Google Scholar 

  53. Fields, G.B. and Noble, R.L.,Solid-phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids, Int. J. Pept. Protein Res., 35 (1990) 161–214.

    Google Scholar 

  54. Atherton, E. and Sheppard, R.C.,The fluorenylmethoxycarbonyl amino protecting group, In The Peptides: Analysis, Synthesis, Biology, Vol. 9, Academic Press, London, U.K., 1987, pp. 1–38.

    Google Scholar 

  55. Vandersteen, A.M. and Janda, K.D.,A re-examination of two linear penta-peptides claimed to be serine protease mimics, J. Am. Chem. Soc., (1996) in press.

  56. Goren, H.J. and Fridkin, M.,The hydrolysis of p-nitrophenyl acetate in water, mechanism and method of measurement, Eur. J. Biochem., 41 (1974) 263–272.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vandersteen, A.M., Han, H. & Janda, K.D. Liquid-phase combinatorial synthesis: In search of small-molecule enzyme mimics. Mol Divers 2, 89–96 (1996). https://doi.org/10.1007/BF01718705

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01718705

Keywords

Navigation