Skip to main content
Log in

Plasma adenosine 3′:5′ — cyclic monophosphate response to glucagon in uremia

Plasmaadenosin 3′:5′ cyclisches Monophosphat, Verhalten nach Glukagonstimulation bei Urämie

  • Originalien
  • Published:
Klinische Wochenschrift Aims and scope Submit manuscript

Summary

The effect of a single, intravenously administered dose of glucagon on plasma cyclic adenoside monophosphate (cAMP) was studied in seven normal subjects, ten patients with chronic renal failure (CRF), and ten patients with terminal renal insufficiency (TRI) receiving long-term haemodialysis treatment (HD). Ten minutes following glucagon administration, uremic patients displayed a significantly (P < 0.0001) greater increase in cAMP than control subjects. Glucose levels after glucagon administration did not differ significantly between the normal and uremic groups, and lipolysis was less pronounced in the uremic patients than in the controls (P < 0.003). These results could not be attributed to differences in serum insulin response. The findings demonstrate differences in the hepatic adenylate cyclase and cAMP response between normal and uremic subjects. These alterations in cAMP responsiveness may play a role in the pathophysiology of the metabolic disturbances associated with uremia.

Zusammenfassung

Vergleichend wurde der Effekt einer intravenös gegebenen Einzeldosis von Glukagon auf das Verhalten der cAMP-Konzentration im Plasma untersucht. Die Untersuchungen erfolgten an 7 gesunden Personen, 10 Patienten mit chronischer Niereninsuffizienz und 10 Patienten, die auf Grund des chronischen Nierenversagens einer Langzeithämodialysebehandlung bedurften.

10 min nach Glukagonanwendung zeigten die urämischen Patienten einen signifikanten (p < 0,0001) größeren Anstieg von cAMP im Vergleich zu der Kontrollgruppe.

Die Glukosekonzentrationen zeigten nach Glukagon zwischen den beiden Gruppen keine Differenz.

Die Lipolyse war in der urämischen Patientengruppe weniger stark ausgeprägt, als bei den Kontrollen (p < 0,003). Die Resultate ließen sich nicht auf Unterschiede in der Insulinantwort zurückführen.

Die Befunde weisen auf ein unterschiedliches Verhalten der hepatischen Adenylatcyclase und der cAMP-Bildung zwischen gesunden und urämischen Personen hin. Diese Änderungen der cAMP-Aktivität können eine grundsätzliche Rolle bei der Pathophysiologie metabolischer Störungen bei Urämie spielen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Taylor AL, Davis BB, Pawlson LG, Josimovich JB, Mintz DH (1970) Factors influencing the urinary excretion of 3′ 5′-adenosine monophosphate in humans. J Clin Endocrinol Metab 30:316–323

    Google Scholar 

  2. Vlachoyannis J, Meyer C, Meyer G, Brecht HM, Schoeppe W (1975) The behaviour of cyclic 3′ 5′ AMP in the serum in patients with terminal renal insufficiency, chronic hemodialysis and patients who have undergone a transplantation. VI Intern Congr Nephrol Florence, 1012

  3. Hamet P, Stouder DA, Ginn EH, Hardman JG, Liddle GM (1975) Studies of the elevated extracellular concentration of cyclic AMP in uremic man. J Clin Invest 56:339–345

    Google Scholar 

  4. Exton JH, Park CR (1968) The role of cyclic AMP in the control of liver metabolism. Adv Enzyme Regul 6:391–407

    Google Scholar 

  5. Exton JH, Mallette LE, Jefferson LS, Wong EHA, Friedman N, Miller TB, Park CR (1970) The hormonal control of hepatic gluconeogenesis. Recent Prog Horm Res 26:411–457

    Google Scholar 

  6. Exton JH, Robison GA, Sutherland EW, Park CR (1971) Studies on the role of adenosine 3′ 5′-monophosphate in the hepatic actions of glucagon and catecholamines. J Biol Chem 246:6166–6177

    Google Scholar 

  7. Sokal JE, Sarcione EJ, Henderson AM (1964) Relative potency of glucagon and epinephrine as hepatic glycogenolytic agents; studies with the isolated perfused rat liver. Endocrinology 74:930–938

    Google Scholar 

  8. Exton JH, Park CR (1972) Interaction of insulin and glucagon in the control of liver metabolism. Handb Physiol Sect 7:Endocrinol p 437

    Google Scholar 

  9. Mackrell DJ, Sokal JE (1969) Antagonism between the effects of insulin and glucagon on the isolated liver. Diabetes 18:724–732

    Google Scholar 

  10. Samols E, Marri G, Marks V (1965) Promotion of insulin secretion by glucagon. Lancet 2:415–416

    Google Scholar 

  11. Broadus AE, Kaminsky NI, Northcutt RC, Hardmann JG, Sutherland EW, Liddle GW (1970) Effects of glucagon in adenosine 3′ 5′-monophosphate and guanosine 3′ 5′-monophosphate in human plasma and urine. J Clin Invest 49:2237–2245

    Google Scholar 

  12. Liljenquist JE, Bonbou JD, Lewis SB, Sinclair-Smith BC, Felts PW, Lacy WW, Crofford OB, Liddle GW (1974) Effect of glucagon on net splanchnic cyclic AMP production in normal and diabetic man. J Clin Invest 53:198–204

    Google Scholar 

  13. Bagdage JD (1975) Disorders of carbohydrate and lipid metabolism in uremia. Nephron 14:153–162

    Google Scholar 

  14. Cohen BD (1962) Abnormal carbohydrate metabolism in renal disease. Ann Intern Med 57:204–213

    Google Scholar 

  15. Dzurik R, Niederland TR, Cernacek P (1969) Carbohydrate metabolism by rat liver slices incubated in serum obtained from uremic patients. Clin Sci Mol Med 37:409–417

    Google Scholar 

  16. Vlachoyannis J, Weismüller G, Schoeppe W (1976) Effects of dopamine on kidney function and on the adenyl cyclase phosphodiesterase systems in man. Eur J Clin Invest 6:131–137

    Google Scholar 

  17. Gilman AG (1970) A protein binding assay for adenosine 3′ 5′-cyclic monophosyphate. Proc. Natl Acad Sci USA 67:305–312

    Google Scholar 

  18. Catt K, Tregear GW (1967) Solid-phase radioimmunoassay in antibody-coated tubes. Science 158:1570–1573

    Google Scholar 

  19. Schmidt FH (1961) Die enzymatische Bestimmung von Glucose und Fruktose nebeneinander. Klin Wochenschr 39:1244–1247

    Google Scholar 

  20. Eggstein M, Kuhlmann C (1970) Triglyceride und Glycerin. In: Methoden der enzymatischen Analyse. Herausgeber: Bergmeyer HU, Verlag Chemie, Band 3, p 1765

  21. Broadus AE, Kaminsky NI, Hardman JG, Sutherland EW, Liddle GW (1970) Kinetic parameter and renal clearances of plasma-adenosine 3′ 5′-monophosphate and guanosine 3′ 5′-monophosphate in man. J Clin Invest 49:2222–2236

    Google Scholar 

  22. Vlachoyannis J, Lemmer JB, Meyer G, Hartenstein-Pettla T, Schoeppe W (1976) Auswirkungen der akuten Urämie auf den cAMP-Gehalt in Herz, Leber und Plasma. Dtsch Med Wochenschr 45:1649–1651

    Google Scholar 

  23. Dzurik R, Brixova F (1968) Liver glycogen concentration in patients with chronic uremia. Experimentia 24:552–553

    Google Scholar 

  24. Linder GC, Hiller A, van Slyke DD (1924) Carbohydrate metabolism in nephritis. J Clin Invest 1:247–272

    Google Scholar 

  25. Parrish AE (1969) The effect of azotemia on liver glycogen metabolism. Proc Intern Congr Nephrol 4:88

    Google Scholar 

  26. Cerletty JM, Engbring HH (1967) Azotemia and glucose intolerance. Ann Intern Med 66:1097–1108

    Google Scholar 

  27. Hampers CL, Soeldner JS, Doak PB, Merrill JP (1966) Effect of chronic renal failure and hemodialysis on carbohydrate metabolism. J Clin Invest 45:1719–1731

    Google Scholar 

  28. Hutchings RH, Hegstrom RM, Scribner BH (1966) Glucose intolerance in patients on long-term intermittent dialysis. Ann Intern Med 65:275–285

    Google Scholar 

  29. Tchobroutsky G, De L'Hortet C, Rosselin G, Assan R, Derot M (1965) Study of glyco-regulation in chronic renal insufficiency. Diabetologica 1:101–108

    Google Scholar 

  30. Bilbrey GL, Faloona GR, White MG, Knochel JP (1974) Hyperglucagonemia of renal failure. J Clin Invest 53:841–847

    Google Scholar 

  31. Balestri PL, Biagini M, Rindi P, Giovanetti S (1970) Uremic Toxins. Arch Intern Med 126:843–845

    Google Scholar 

  32. Butcher RW (1966) Cyclic 3′ 5′-AMP and the lipolytic effects of hormones on adipose tissue. Pharmacol Rev 18:237–241

    Google Scholar 

  33. Robison GA, Butcher RW, Sutherland EW (1968) Cyclic AMP. Ann Rev Biochem 37:149–174

    Google Scholar 

  34. Steinberg D (1966) Catecholamine stimulation of fat mobilization and its metabolic consequences. Pharmacol Rev 18:217–235

    Google Scholar 

  35. Park CR, Lewis SB, Exton JH (1972) Relationship of some hepatic actions of insulin to the intracellular level of cyclic adenylate. Diabetes 21:439–466

    Google Scholar 

  36. Fassina G (1967) Antagonistic action of metabolic inhibitors on dibutyryl cyclic 3′ 5′-adenosine monophosphate-stimulated and caffeine-stimulated lipolysis in vitro. Life Sci 6:825–831

    Google Scholar 

  37. Corbin JD, Sneyd JGT, Butcher RW (1968) Control of lipolysis in fat tissue by cyclic adenylate. Fed Proc 27:647–649

    Google Scholar 

  38. Corbin JD, Krebs EG (1969) A cyclic AMP-stimulated protein kinase in adipose tissue. Biochem Biophys Res Commun. 36:328–336

    Google Scholar 

  39. Huttunen JK, Steinberg D, Mayer SE (1970) ATP-dependent and cyclic AMP-dependent activation on rat adipose tissue lipase by protein kinase from rabbit skeletal muscle. Proc Natl Acad Sci USA 67:290–295

    Google Scholar 

  40. Huttunen JK, Steinberg D (1971) Activation and phosphorylation of a purified adipose tissue hormone-sensitive lipase by cyclic AMP-dependent protein kinase. Biochim Biophys Acta 239:411–427

    Google Scholar 

  41. Rizack MA (1964) Activation of an epinephrine-sensitive lipolytic activity from adipose tissue by adenosine 3′ 5′-phosphate. J Biol Chem 239:392–395

    Google Scholar 

  42. Tsai SC, Vaughan M (1970) Activation of partially purified lipase from adipose tissue by ATP, MgCl2 and cyclic 3′ 5′-AMP. Fed Proc 29:602

    Google Scholar 

  43. Bergström J, Bittar EE (1969) The basis of uremic toxicity. Vol VI, Chapter 14, Biological Basis of Medicine. Academic Press, New York

    Google Scholar 

  44. Black DAK (1970) A perspective on uremic toxins. Arch Intern Med 126:906–909

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vlachoyannis, J., Schoeppe, W. Plasma adenosine 3′:5′ — cyclic monophosphate response to glucagon in uremia. Klin Wochenschr 60, 651–657 (1982). https://doi.org/10.1007/BF01716797

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01716797

Key words

Schlüsselwörter

Navigation