Skip to main content
Log in

Genetically engineered resistance to potato virus X in four commercial potato cultivars

  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

The genes for the capsid protein (CP) and the 8K movement protein of PVX were introduced into potato (Solanum tuberosum L.) and expressed under the control of CaMV 35S promoter using a binary vector andAgrobacterium tumefaciens. Four commercial potato cultivars (Russet Burbank, Shepody, Desirée and Bintje) have been efficiently transformed. Eleven independent transgenic clones, with CP expression levels higher than 0.05% of the soluble leaf proteins, were analyzed for resistance to inoculation with PVX (5 and 50µg/ml). The resistance of the transgenic plants to PVX was observed with the lower titer of virus inoculation (5 µg/ml) but not with higher titer (50 µg/ml). A significant reduction in the accumulation of virus in the inoculated transgenic potato plants has been observed under greenhouse and field conditions. Furthermore, the CP gene is very stable and is transferred to new plants originated from stem cuttings or from tubers. The transgenic plants appeared to be phenotypically identical to the nontransformed controls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BAP:

benzyl-aminopurine

BCIP:

5-bromo-4-chloro-3-indolylphosphate p-Toluidine salt

CaMV:

cauliflower mosaic virus

CP:

capsid protein

GA3 :

gibberellic acid

Kbp:

kilobase pair

NAA:

naphthalene acetic acid

NBT:

nitroblue tetrazolium chloride

NOS:

nopaline synthase

NPT II:

neomycin phosphotransferase II

PMSF:

phenyl methyl sulfonyl fluoride

PVX:

potato virus X

PVY:

potato virus Y

References

  • Audy P, Palukaitis P, Slack SA, Zaitlin M (1994) Mol Plant-Microbe Interact 7:15–22

    PubMed  Google Scholar 

  • Beck AL, Van Dolleweerd CJ, Lough TJ, Balmori E, Voot DM, Andersen MT, O'Brien IEW, Forster RLS (1994) Proc Natl Acad Sci USA 91: 10310–10314

    PubMed  Google Scholar 

  • Bevan MW (1984) Nucl Acids Res 12: 8711–8721

    PubMed  Google Scholar 

  • Cruz SS, Baulcombe DC (1993) Mol Plant-Microbe Interact 6: 707–714

    PubMed  Google Scholar 

  • De Block M (1988) Theor Appl Genet 76: 767–774

    Google Scholar 

  • Donson J, Kearney CM, Turpen TH, Khan IA, Kurath G, Turpen AM, Jones GE, Dawson WO, Lewandowski DJ (1993) Mol Plant-Microbe Interact 6: 635–642

    PubMed  Google Scholar 

  • Eweida M, Xu H, Singh RP, AbouHaidar MG (1990) Plant Pathol 39:623–628

    Google Scholar 

  • Fang G, Grumet R (1993) Mol Plant-Microbe Interact 6: 358–367

    PubMed  Google Scholar 

  • Farinelli L, Malnoë P (1993) Mol Plant-Microbe Interact 6:284–292

    PubMed  Google Scholar 

  • Fitchen JH, Beachy RN (1993) Annu Rev Microbiol 47: 739–763

    PubMed  Google Scholar 

  • Fulton RW (1986) Annu Rev Phytopathol 24: 67–81

    Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Exp Cell Res 50: 151–158

    PubMed  Google Scholar 

  • Hemenway C, Fang RF, Kaniewski WK, Chua NH, Tumer NE (1988) EMBO J 7: 1273–1280

    Google Scholar 

  • Hoekema A, Huisman MJ, Willink DP-L, Jongedijk E, van den Elzen P, Cornelissen BJC (1991) Plant Mol Biol 2: 183–192

    Google Scholar 

  • Jongedijk E, de Schutter AAJM, Stolte T, van der Elzen PJM, Cornelissen BJG, (1992) Bio/Technology 10: 422–429

    PubMed  Google Scholar 

  • Lawson C, Kaniewski W, Haley L, Rozman R, Newell C, Sanders P, Tumer NE (1990) Bio/Technology 8:127–134

    PubMed  Google Scholar 

  • Lindbo JA, Silva-Rosales L, Proebsting WM, Dougherty WG (1993) Plant Cell 5: 1749–1759

    PubMed  Google Scholar 

  • Matthews REF (1949) Annu Appl Biol 36: 460–474

    Google Scholar 

  • Morozov SYu, Miroshnichenko NA, Solovyev AG, Fedorkin ON, Zellenina DA, Lukasheva LI, Karasev AV, Dolja VV, Atabekov JG (1991) J Gen Virol 72: 2039–2042

    PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) Physiol Plant 15: 473–497

    Google Scholar 

  • Nakajima M, Hayakawa, T, Nakamura, I, Suzuki, M (1993) J Gen Virol 74: 319–322

    PubMed  Google Scholar 

  • Nikolaeva OV, Morozov SYu, Zakhariev VM, Skryabin KG (1990) J Phytopathol 129: 283–290

    Google Scholar 

  • Rubino L, Lupo R, Russo M (1993) Mol Plant-Microbe Interact 6: 729–734

    Google Scholar 

  • Simth HA, Swaney SL, Parks TW, Wernsman EA, Dougherty WG (1994) Plant Cell 6: 1441–1453

    PubMed  Google Scholar 

  • Torrance L, Larkins AP, Butcher GW (1986) J Gen Virol 67: 57–67

    Google Scholar 

  • Vance VB (1991) Virology 182: 486–494

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by W. A. Parrott

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, H., Khalilian, H., Eweida, M. et al. Genetically engineered resistance to potato virus X in four commercial potato cultivars. Plant Cell Reports 15, 91–96 (1995). https://doi.org/10.1007/BF01690261

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01690261

Keywords

Navigation