Skip to main content
Log in

Prediction of the steady surface thermal plume in crossflow

Berechnung stationärer Oberflächenauftriebsstrahlen in Querströmung

  • Published:
Wärme - und Stoffübertragung Aims and scope Submit manuscript

Abstract

This paper presents a two-dimensional numerical procedure which employs finite-difference techniques to solve the partial-differential equations governing the steady flow and heat transfer of a surface thermal plume above a crossflowing ambient fluid in the near field. An earlier model developed for predicting thermal plumes in stagnant surroundings is extended by the inclusion of curvature terms in the momentum equations. An integral equation is also solved to determine the trajectory of the thermal plume. Comparisons of present model calculations with two sets of experimental data show that the centre-line trajectories as well as the velocity and temperature decays are well predicted.

Zusammenfassung

Dieser Bericht beschreibt ein zweidimensionales Rechenverfahren, das mit Hilfe Finiter-Differenzen-Techniken die partiellen Differentialgleichungen löst, welche das Geschwindigkeits- und Temperaturfeld stationärer Oberflächenauftriebsstrahlen über einer querströmenden umgebenden Flüssigkeit beschreiben. Ein früheres Modell, entwickelt für die Berechnung von Auftriebsstrahlen in stehenden Umgebungen, wurde durch Einfügung von Krümmungseffekten in den Impulsgleichungen erweitert. Eine Integralgleichung wurde ebenfalls gelöst, um den Bahnverlauf der Auftriebsstrahlen zu bestimmen. Vergleiche der vorgestellten Modellrechnungen mit zwei experimentell bestimmten Datensätzen zeigen, daß sowohl die Mittellinienbahnverläufe als auch die Geschwindigkeits- und Temperaturverläufe gut berechnet wurden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AR :

(b/z)IN, initial aspect ratio

b :

initial layer width

C :

specific heat of water

D :

(initial area)1/2, characteristic length scale

E :

external layer boundary

E t :

entrainment coefficient

F :

\(\frac{U}{{\left( {\frac{{\Delta \varrho }}{\varrho }gz} \right)^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} }}\), densimetric Froude number

g :

acceleration due to gravity

I :

internal layer boundary

\(\dot m_h^{''} \) :

lateral entrainment rate per unit area

\(\dot m_v^{''} \) :

vertical entrainment rate per unit area

n :

lateral distance normal tos

P :

pressure

R :

radius of curvature of centre-line trajectory

Ri :

\(\frac{1}{{F^2 }}\), overall Richardson number

r :

radius of curvature of other longitudinal grid lines

s :

distance along centre-line trajectory

T :

temperature

ΔT :

To-T

U :

longitudinal velocity tangential to trajectory

V :

lateral velocity normal to trajectory

x :

longitudinal distance in Cartesian coordinates

y :

lateral distance in Cartesian coordinates

z :

layer depth

α :

angle between crossflow direction and the normal to the trajectory

Γ T :

thermal diffusion coefficient

μ :

effective viscosity

ϱ :

density

ψ :

stream function

σ :

Prandtl number

θ :

inclination of a longitudinal grid line to the centre-line trajectory

ω :

\(\frac{{\psi - \psi _I }}{{\psi _E - \psi _I }}\), normalized stream function

C L :

centre-line condition

e q :

equilibrium condition

IN :

initial condition

I, E :

conditions along theI andE boundaries

o :

ambient fluid property

References

  1. Demuren, A. O.: Prediction of the steady surface thermal plume. Wärme-Stoffübertrag. 17 (1983) 193–200

    Google Scholar 

  2. Abramovich, G. N.: The theory of turbulent jets. MIT Press (1963)

  3. Crowe, C. T.; Riesenbieter, H.: An analytical and experimental study of jet deflection in crossflow. Fluid Dynamics of Rotor and Fan-Supported Aircraft, AGARD preprints (1967)

  4. Vizel, Y. M.; Mostinskii, I. L.: Deflection of a jet injected into a stream. Fluid Dynamics (English translation of Inzhenerno-Fizicheskii) 8, (1965)

  5. Platten, J. L.; Keffer, J. F.: Entrainment in deflected axi-symmetric jets at various angles to the stream. University of Toronto, Mech. Eng. Dept. Rept. TP 6808 (1968)

  6. Rodi, W.; Pavlovic, R. N.: Fallstudien zur tiefengemittelten Berechnung der Abwärme- und Abwasserausbreitung in Flüssen. Wasserwirtschaft 72 (1982) 279–285

    Google Scholar 

  7. Demuren, A. O.; Rodi, W.: Side discharges into open channel: Mathematical model, ASCE, J. Hydraulic Engg., HY 12 (1983)

  8. Stolzenbach, K. D.; Harleman, D. R. F.: An analytical and experimental investigation of surface discharges of heated water. R. M. Parsons Lab., MIT, Tech. Rep. No. 135, (1971)

  9. Stefan, H.; Bergstedt, L.; Mrosla, E.: Flow establishment and initial entrainment of heated water surface jets. St. Anthony Falls Hydraulic Lab., Rep. No. EPA-660-75-014, (1975)

  10. Sundaram, T. R.; Wu, J.: Wind effects on thermal plume in water bodies. In: Flow Studies in Air and Water Pollution. New York: ASME 1973

    Google Scholar 

  11. Carter, H. H.: A preliminary report on the characteristics of a heated jet discharged horizontally into a transverse current: Part 1 constant depth — Cheasepeake Bay Inst. John Hopkins University, Tech. Rep. No. 61 (1969)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demuren, A.O. Prediction of the steady surface thermal plume in crossflow. Warme- und Stoffubertragung 19, 41–46 (1985). https://doi.org/10.1007/BF01682545

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01682545

Keywords

Navigation