Skip to main content
Log in

Deposition of droplets from turbulent stream

Das Ausscheiden von Tropfen aus turbulenter Gasströmung

  • Published:
Wärme - und Stoffübertragung Aims and scope Submit manuscript

Abstract

A model of particle deposition from a turbulent stream is presented. It is based on the modified stopping distance concept which allows for the difference between particle and eddy diffusivities, recognizing that the particle has equal probability to move toward the wall or back into the turbulent core. The theory is tested against the data which cover a wide range of droplet size and duct Reynolds number for different surface configuration. A quite satisfactory agreement has been found in all examined cases.

Zusammenfassung

Es wird ein Modell des Ausscheidens von Tropfen bzw. Teilchen aus einer turbulenten Strömung behandelt. Die Grundlage bildet eine Modifikation des Konzepts des Bremsweges eines Teilchens unter Annahme gleicher Wahrscheinlich-keit der Teilchenbewegung in beiden Richtungen vertikal zur Wand. Die Theorie wurde mit Experimentalwerten verglichen, die sich über einen weiten Arbeitsbereich erstreckten. In allen untersuchten FÄllen hat sich gute übereinstimmung mit der Theorie ergeben.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A, A 1 :

constant coefficients

a, a 1 a 2 :

constant coefficients

b :

ratio of eddy diffusivities

B :

ratio of average to maximum concentration

c :

concentration

d :

diameter

D :

coefficient defined in the text

E g :

energy spectrum of velocity fluctuations

f s :

friction factor

F :

gravity force

g :

gravity acceleration

k :

mass transfer coefficient

m :

particle mass flux, exponent

n, n 1,n 2 :

exponents

P, P 1 P 2 :

probabilities

R :

ratioΝg/u*

Re:

duct Reynolds number, Re=¯u d t/v g

s :

stopping distance

s + :

dimensionless stopping distance,s +=s u */v g

u :

axial velocity

u * :

friction velocity,u *=√Τ w/ϱ g

v :

y-directional velocity

v′ :

y-directional velocity fluctuations

y, Y :

distance from duct wall

y + :

dimensionless distance,y +=y u */v g

α :

angle

δ :

boundary layer thickness

ε p,ε g :

particle and gas diffusivities

Ω :

angular frequency

η :

ratio between amplitudes of oscillation of particle and gas

Μ :

viscosity

v :

kinematic viscosity

Τ:

shear stress

ϱ :

density

c:

center

ch:

characteristic

g:

gas

gr:

gravity

o:

initial

p:

particle, droplet

t:

turbulent, tube

w:

wall

ϕ :

circumferential

-:

mean

References

  1. Friedlander, S. K.; Johnstone, H. F.: Deposition of suspending particles from turbulent gas streams. Ind. Eng. Chem. 49 (1957) 1151–1156

    Google Scholar 

  2. Davies, C. N.: Aerosol Science. Oxford-New York: Academic Press 1966

    Google Scholar 

  3. Beal, S. K.: Deposition of particles in turbulent flow on channel or pipe walls. Nucl. Sci. Eng. 40 (1970) 1–11

    Google Scholar 

  4. Liu, Y. H.; Ilori, T. A.: Aerosol deposition in turbulent flow. Environ. Sci. Technol. 8 (1974) 351–356

    Google Scholar 

  5. McCoy, D. D.; Hanratty, T. I.: Rate of deposition of droplets in annular two-phase flow. Int. I. Multiphase Flow 3 (1977) 319–331

    Google Scholar 

  6. Namie, S.; Ueda, T.: Droplet transfer in two-phase annular mist flow. Bull. ISME 16 (1973) 752–764

    Google Scholar 

  7. Liu, Y. H.; Agarwal, I. K.: Experimental observations of aerosol deposition in turbulent flow. J. Aerosol Sci. 5 (1974) 145–155

    Google Scholar 

  8. Rouhiainen, P. O.; Stachiewicz, I. W.: On the deposition of small particles from turbulent streams. Trans. ASME J. Heat Transfer. 92 (1970) 169–177

    Google Scholar 

  9. Hinze, I. O.: Turbulence. New York: McGraw-Hill 1959

    Google Scholar 

  10. Comte-Bellot, G.: Ecoulement Turbulent Entre Deux Parois Paralleles. Publ. Sci. Tech. Minist. 418 (1965)

  11. Cousins, L. B.; Hewitt, G. F.: Liquid phase mass transfer in annular two-phase flow: droplet deposition and liquid entrainment. AERE-R-5657 (1968)

  12. Farmer, R.; Griffith, P.; Rohsenow, W. M.: Liquid droplet deposition in two-phase flow. Trans. ASME J. Heat Transfer. (1970) 587–594

  13. Alexander, L. G.; Coldren, C. L.: Droplet transfer from suspending air to duct walls. Ind. Eng. Chem. 43 (1951) 1325–1331

    Google Scholar 

  14. Trela, M.; Durkiewicz, B.; Zembik, I.: Droplet deposition on surfaces of different geometry. Submitted to Prace IMP 1980 (in Polish)

  15. Simpson, H. C.; Broils, E. K.: Droplet deposition on a flat plate from an air-water mist in turbulent flow over the plate. Symp. on Two-Phase Flow Systems. University of Strathclyde. Glasgow 1 (1974) A3

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trela, M. Deposition of droplets from turbulent stream. Wärme- und Stoffübertragung 16, 161–168 (1982). https://doi.org/10.1007/BF01679502

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01679502

Keywords

Navigation