Skip to main content

Physics and Modelling of Particle Deposition and Resuspension in Wall-Bounded Turbulence

  • Chapter
  • First Online:
Particles in Wall-Bounded Turbulent Flows: Deposition, Re-Suspension and Agglomeration

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 571))

Abstract

The objective of this chapter is twofold. First, it provides a general overview of the Eulerian-Lagrangian modelling approach to the numerical simulation of turbulent dispersed flows in the point-particle limit. Second it reviews the phenomenology of particle deposition and resuspension in wall-bounded turbulence as brought to light by Eulerian-Lagrangian studies over the last two decades. Specific interest is devoted to the case of inertial particles, which are ubiquitous in environmental and industrial flow-systems. Effects due to particle shape on deposition and resuspension mechanisms, as well as on numerical modelling are also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adrian, R. J. (2007). Hairpin vortex organization in wall turbulence. Physics of Fluids, 19, 041301.

    Google Scholar 

  • Arcen, B., Tanière, A., & Oesterlé B. (2006). On the influence of near wall forces in particle-laden channel flows. International Journal of Multiphase Flow, 32, 1326–1339.

    Google Scholar 

  • Armenio, V., Piomelli, U., & Fiorotto, V. (1999). Effect of the subgrid scales on particle motion. Physics of Fluids, 11, 3030–3042.

    Article  MATH  Google Scholar 

  • Bernard, P. S., Thomas, J. M., & Handler, R. A. (1993). Vortex dynamics and the production of reynolds stress. Journal of Fluid Mechanics, 253, 385–419.

    Article  MATH  Google Scholar 

  • Bernardini, M. (2014). Reynolds number scaling of inertial particle statistics in turbulent channel flows. Journal of Fluid Mechanics, 758, 1–13.

    Article  Google Scholar 

  • Brenner, H. (1964). The stokes resistance of an arbitrary particle iv. arbitrary fields of flow. Chemical Engineering Science, 19, 703–727.

    Google Scholar 

  • Brooke, J. W., & Hanratty T. J. (1993). Origin of turbulence-producing eddies in channel flow. Physics of Fluids A, 5, 1011–1022.

    Google Scholar 

  • Brooke, J. W., Kontomaris, K., Hanratty, T. J., & McLaughlin, J. B. (1992). Turbulent deposition and trapping of aerosols at a wall. Physics of Fluids A, 4, 825–834.

    Google Scholar 

  • Calzavarini, E., Kerscher, M., Lohse, D., & Toschi, F. (2008). Dimensionality and morphology of particle and bubble clusters in turbulent flow. Journal of Fluid Mechanics, 607, 13–24.

    Google Scholar 

  • Campolo, M., Cremese, A., & Soldati, A. (2008). Controlling particle dispersion in a transverse jet by synchronized injection. AIChE Journal, 54, 1975–1986.

    Google Scholar 

  • Caporaloni, M., Tampieri, F., Trombetti, F., & Vittori, O. (1975). Transfer of particles in nonisotropic air turbulence. Journal of the Atmospheric Sciences, 32, 565–568.

    Google Scholar 

  • Chakraborty, P., Balachandar, S., & Adrian, R. J. (2007). On the relationships between local vortex identification schemes. Journal of Fluid Mechanics, 535, 189–214.

    Article  MathSciNet  MATH  Google Scholar 

  • Chang, Y. S., & Scotti, A. (2003). Entrainment and suspension of sediments into a turbulent flow over ripples. Journal of Turbulence, 4, 1–19.

    Article  Google Scholar 

  • Chong, M.S., Perry, A., & Cantwell, B. J. (1990). A general classification of three-dimensional flow fields. Phys. Fluids A, 2, 765–777.

    Google Scholar 

  • Clift, R., Grace, J. R., & Weber, M. E. (1978). Bubbles, Drops and Particles. Academic Press.

    Google Scholar 

  • Collins, L. R., & Keswani, A. (2004). Reynolds number scaling of particle clustering in turbulent aerosols. New Journal of Physics, 6, 1–19.

    Article  Google Scholar 

  • Cousins, L. B., & Hewitt, G. F. (1968). Liquid phase mass transfer in annular two-phase flow: Droplet deposition and liquid entrainment. In UKAEA Report, AERE-R-5657, (pp. 257–271).

    Google Scholar 

  • Crowe, C., Sommerfeld, M., & Tsuji. T. (1998). Multiphase flows with droplets and particles. CRC Press.

    Google Scholar 

  • Csanady, G. T. (1963). Turbulent diffusion of heavy particles in the atmosphere. Journal of Atmospheric Sciences, 20, 201–208.

    Article  Google Scholar 

  • De, Angelis, V., Lombardi, P., Andreussi, P., & Banerjee, S. (1997). Microphysics of scalar transfer at air-water interfaces. In Proceedings of the IMA Conference on Wind over Wave Couplings, (pp. 257–271).

    Google Scholar 

  • Dritselis, C. D., & Vlachos, N. S. (2008). Numerical study of educed coherent structures in the near-wall region of a particle-laden flow. Physics of Fluids, 20, 055103.

    Google Scholar 

  • Dubief, Y., & Delcayre, F. (2000). On coherent-vortex identification in turbulence. Physics of Fluids, 1, 11–32.

    MathSciNet  MATH  Google Scholar 

  • Eaton, J. K., & Fessler, J. R. (1994). Preferential concentration of particles by turbulence. International Journal of Multiphase Flow, 20, 169–209.

    Article  MATH  Google Scholar 

  • Elghobashi, S. (1994). On predicting particle-laden turbulent flows. Applied Scientific Research, 52, 309–329.

    Article  Google Scholar 

  • Elghobashi, S., & Truesdell, G. C. (1992). Direct simulation of particle dispersion in a decaying isotropic turbulence. Journal of Fluid Mechanics, 242, 655–700.

    Article  Google Scholar 

  • Fessler, J. R., Kulick, J. D., & Eaton, J. K. (1994). Preferential concentration of heavy particles in a turbulent channel flow. Physics of Fluids, 6, 3742–3749.

    Article  Google Scholar 

  • Février, P., Simonin, O., & Squires, K. D. (2005). Partitioning of particle velocities in gas-solid turbulent flows into a continuous field and a spatially uncorrelated random distribution: Theoretical formalism and numerical study. Journal of Fluid Mechanics, 533, 1–46.

    Article  MathSciNet  MATH  Google Scholar 

  • Fukagata, K., Zahrai, S., Kondo, S., & Bark, F. H. (2001). Anomalous velocity fluctuations in particulate turbulent channel flow. International Journal of Multiphase Flow, 27, 701–719.

    Article  MATH  Google Scholar 

  • Gallily, I., & Cohen, A. H. (1979). On the orderly nature of the motion of non-spherical aerosol particles. ii. inertial collision between a spherical large droplet and axially symmetrical elongated particle. Journal of Colloid Interface Science, 68, 338–356.

    Article  Google Scholar 

  • Grassberger, P., & Procaccia, I. (1983). Measuring the strangeness of strange attractors. Physica D, 9, 189–208.

    Article  MathSciNet  MATH  Google Scholar 

  • Guezennec, Y. G., Piomelli, U., & Kim, J. (1989). On the shape and dynamics of wall structures in turbulent channel flow. Physics of Fluids A, 1, 764–766.

    Google Scholar 

  • Harper, E. Y., & Chang, I. D. (1968). Maximum dissipation resulting from lift in a slow viscous shear flow. Journal of Fluid Mechanics, 33, 209–225.

    Article  MATH  Google Scholar 

  • Hogg, A. J. (1994). The inertial migration of non-neutrally buoyant spherical particles in two-dimensional shear flows. Journal of Fluid Mechanics, 272, 285–318.

    Article  MathSciNet  MATH  Google Scholar 

  • Hunt, J. C. R., Wray, A. A., & Moin, P. (1998). Eddies, stream and convergence zones in turbulent flows. In Center of Turbulence Research Rep. CTR-S88, (pp. 193–208).

    Google Scholar 

  • Jeffery, G. B. (1922). The motion of ellipsoidal particles immersed in a viscous fluid. Proceedings of the Royal Society, 102, 161–179.

    Article  MATH  Google Scholar 

  • Jeong, J., & Hussain, A. K. M. F. (1995). On the identification of a vortex. Journal of Fluid Mechanics, 285, 69–83.

    Article  MathSciNet  MATH  Google Scholar 

  • Jimenez, J., & Pinelli, A. (1999). The autonomous cycle of near-wall turbulence. Journal of Fluid Mechanics, 389, 335–359.

    Article  MathSciNet  MATH  Google Scholar 

  • Jimenez, J., Moin, P., Moser, R., & Keefe, L. (1988). Ejection mechanisms in the sublayer of a turbulent channel. Physics of Fluids, 31, 1311–1313.

    Article  Google Scholar 

  • Kaftori, D., Hetsroni, G., & Banerjee, S. (1995a). Particle behavior in the turbulent boundary layer. i. motion, deposition, and entrainment. Physics of Fluids, 7, 1095–1106.

    Article  Google Scholar 

  • Kaftori, D., Hetsroni, G., & Banerjee, S. (1995b). Particle behavior in the turbulent boundary layer. ii. velocity and distribution profiles. Physics of Fluids, 7, 1107–1121.

    Article  Google Scholar 

  • Kasagi, N., & Iida, O. (1999). Progress in direct numerical simulation of turbulent heat transfer. In 5th ASME/JSME Joint Thermal Engineering Conference, (pp. 15–19).

    Google Scholar 

  • Kim, J., & Hussain, A. K. M. F. (1993). Propagation velocity of perturbations in turbulent channel flow. Physics of Fluids A, 5, 695–706.

    Google Scholar 

  • Kleinstreuer, C., & Feng, Y. (2013). Computational analysis of non-spherical particle transport and deposition in shear flow with application to lung aerosol dynamics—a review. Journal of Biomechanical Engineering, 135, 021008.

    Google Scholar 

  • Kline, S. J., Reynolds, W. C., Schraub, F. A., & Runstadler, P. W. (1967). The structure of turbulent boundary layers. Journal of Fluid Mechanics, 30, 741–773.

    Article  Google Scholar 

  • Konan, N. A., Kannengieser, O., & Simonin, O. (2009). Stochastic modeling of the multiple rebound effects for particle-rough wall collisions. International Journal of Multiphase Flow, 35, 933–945.

    Article  Google Scholar 

  • Kuerten, J. G. M. (2006). Subgrid modeling in particle-laden channel flow. Physics of Fluids, 18, 025108.

    Google Scholar 

  • Kuerten, J. G. M., & Vreman, A. W. (2005). Can turbophoresis be predicted by large-eddy simulation? Physics of Fluids, 17, 011701.

    Google Scholar 

  • Kurose, R., & Komori, S. (1999). Drag and lift forces on a rotating sphere in a linear shear flow. Journal of Fluid Mechanics, 384, 183–206.

    Article  MathSciNet  MATH  Google Scholar 

  • Kussin, J., & Sommerfeld, M. (2002). Experimental studies on particle behaviour and turbulence modification in horizontal channel flow with different wall roughness. Experiments in Fluids, 33, 143–159.

    Article  Google Scholar 

  • Lelouvetel, J., Bigillon, F., Doppler, D., Vinkovic, I., & Champagne, J. Y. (2009). Experimental investigation of ejections and sweeps involved in particle suspension. Water Resources Research, 45, W02416.

    Google Scholar 

  • Marchioli, C. (2003). Mechanisms for particle transfer and segregation in turbulent boundary layer. University of Udine.

    Google Scholar 

  • Marchioli, C., & Soldati, A. (2002). Mechanisms for particle transfer and segregation in turbulent boundary layer. Journal of Fluid Mechanics, 468, 283–315.

    Article  MATH  Google Scholar 

  • Marchioli, C., & Soldati, A. (2007). Reynolds number scaling of particle preferential concentration in turbulent channel flow. In Advances in Turbulence XI, (pp. 298–300).

    Google Scholar 

  • Marchioli, C., & Soldati, A. (2013). Rotation statistics of fibers in wall shear turbulence. Acta Mechanica, 224, 2311–2329.

    Article  MathSciNet  MATH  Google Scholar 

  • Marchioli, C., Giusti, A., Salvetti, M. V., & Soldati, A. (2003). Direct numerical simulation of particle wall transfer and deposition in upward turbulent pipe flow. International Journal of Multiphase Flow, 29, 1017–1038.

    Article  MATH  Google Scholar 

  • Marchioli, C., Picciotto, M., & Soldati, A. (2006). Particle dispersion and wall-dependent fluid scales in turbulent bounded flow: implications for local equilibrium models. Journal of Turbulence, 1, 1–12.

    Google Scholar 

  • Marchioli, C., Picciotto, M., & Soldati, A. (2007). Influence of gravity and lift on particle velocity statistics and transfer rates in turbulent vertical channel flow. International Journal of Multiphase Flow, 33, 227–251.

    Article  Google Scholar 

  • Marchioli, C., Salvetti, M. V., & Soldati, A. (2008a). Some issues concerning large-eddy simulation of inertial particle dispersion in turbulent bounded flows. Physics of Fluids, 20, 040603.

    Google Scholar 

  • Marchioli, C., Salvetti, M. V., & Soldati, A. (2008b). Appraisal of energy recovering sub-grid scale models for large-eddy simulation of turbulent dispersed flows. Acta Mechanica, 201, 277–296.

    Article  MATH  Google Scholar 

  • Marchioli, C., Soldati, A., Kuerten, J. G. M., Arcen, B., Taniere, A., Goldensoph, G., et al. (2008c). Statistics of particle dispersion in direct numerical simulations of wall-bounded turbulence: results of an international collaborative benchmark test. International Journal of Multiphase Flow, 34, 879–893.

    Article  Google Scholar 

  • Marchioli, C., Fantoni, M., & Soldati, A. (2010). Orientation, distribution and deposition of elongated, inertial fibers in turbulent channel flow. Physics of Fluids, 22, 033301.

    Google Scholar 

  • Maxey, M. R. (1987). The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields. Journal of Fluid Mechanics, 174, 441–465.

    Article  MATH  Google Scholar 

  • Maxey, M. R., & Riley, J. K. (1983). Equation of motion for a small rigid sphere in a nonuniform flow. Physics of Fluids A, 26, 883–889.

    Google Scholar 

  • Mazzitelli, I. M., Lohse, D., & Toschi, F. (2003). On the relevance of the lift force in bubbly turbulence. Journal of Fluid Mechanics, 488, 283–313.

    Article  MATH  Google Scholar 

  • McLaughlin, J. B. (1989). Aerosol particle deposition in numerically simulated channel flow. Physics of Fluids, 1, 1211–1224.

    Article  Google Scholar 

  • McLaughlin, J. B. (1994). Numerical computation of particles-turbulence interaction. International Journal of Multiphase Flow, 20, 221–232.

    Article  MATH  Google Scholar 

  • Molin, D., Marchioli, C., & Soldati, A. (2012). Turbulence modulation and microbubble dynamics in vertical channel flow. International Journal of Multiphase Flow, 42, 80–95.

    Article  Google Scholar 

  • Monchaux, R., Bourgoin, M., & Cartellier, A. (2012). Analyzing preferential concentration and clustering of inertial particles in turbulence. International Journal of Multiphase Flow, 40, 1–18.

    Article  Google Scholar 

  • Mortensen, P. H., Andersson, H. I., Gillissen, J. J. J., & Boersma, B. J. (2008). Dynamics of prolate ellipsoidal particles in a turbulent channel flow. Physics of Fluids, 20, 093302.

    Google Scholar 

  • Narayanan, C., Lakehal, D., Botto, L., & Soldati, A. (2003). Mechanisms of particle deposition in a fully-developed turbulent open channel flow. Physics of Fluids, 15, 763–775.

    Article  MATH  Google Scholar 

  • Nino, Y., & Garcia, M. H. (1996). Experiments on particle-turbulence interactions in the near-wall region of an open channel flow: implications for sediment transport. Journal of Fluid Mechanics, 326, 285–319.

    Article  Google Scholar 

  • Olla, P. (2002). Transport properties of heavy particles in high reynolds number turbulence. Physics of Fluids, 14, 4266–4277.

    Article  MATH  Google Scholar 

  • Pan, Y., & Banerjee, S. (1996). Numerical simulation of particle interactions with wall turbulence. Physics of Fluids, 8, 2733–2755.

    Article  Google Scholar 

  • Papavassiliou, D. V., & Hanratty, T. J. (1997). Interpretation of large structures observed in a turbulent plane couette flow. International Journal of Heat and Fluid Flow, 18, 55–69.

    Article  Google Scholar 

  • Pedinotti, S., Mariotti, G., & Banerjee, S. S. (1992). Direct numerical simulation of particle behavior in the wall region of turbulent flow in horizontal channels. International Journal of Multiphase Flow, 18, 927–941.

    Article  MATH  Google Scholar 

  • Perry, A., & Chong, M. S. (1987). A description of eddying motions and flow patterns using critical point concepts. Annual Review of Fluid Mechanics, 9, 125–148.

    Article  Google Scholar 

  • Picciotto, M., Marchioli, C., & Soldati, A. (2005). Characterization of near-wall accumulation regions for inertial particles in turbulent boundary layers. Physics of Fluids, 17, 098101.

    Google Scholar 

  • Portela, L. M., & Oliemans, R. V. A. (2003). Eulerian/lagrangian dns/les of particle-turbulence interactions in wall-bounded flows. International Journal for Numerical Methods in Fluids, 43, 1045–1065.

    Article  MathSciNet  MATH  Google Scholar 

  • Portela, L. M., Cota, P., & Oliemans, R. V. A. (2002). Numerical study of the near-wall behaviour of particles in turbulent pipe flows. Powder Technology, 12, 149–157.

    Article  Google Scholar 

  • Ravnik, J., Marchiol, C., Hribersek, M., & Soldati, A. (2013). On shear lift force modelling for non-spherical particles in turbulent flows. AIP Conference Proceedings, 1158, 1107–1112.

    Article  Google Scholar 

  • Reeks, M. W. (1983). The transport of discrete particles in inhomogeneous turbulence. Journal of Aerosol Science, 14, 729–739.

    Article  Google Scholar 

  • Rizk, M. A., & Elghobashi, S. (1985). The motion of a spherical particle suspended in a turbulent flow near a plane wall. Physics of Fluids, 28, 806–817.

    Article  MATH  Google Scholar 

  • Robinson, S. K. (1991). Coherent motions in the turbulent boundary layer. Annual Review of Fluid Mechanics, 23, 601–639.

    Article  Google Scholar 

  • Rouson, D. W. I., & Eaton, J. K. (2001). On the preferential concentration of solid particles in turbulent channel flow. Journal of Fluid Mechanics, 428, 149–169.

    Article  MATH  Google Scholar 

  • Schiller, V. L., & Naumann, A. (1933). Ãœber die grundlegenden berechnungen bei der schwerkraftaufbereitung. Z. Ver. Deut. Ing., 77, 318–320.

    Google Scholar 

  • Schoppa, W., & Hussain, A. K. M. F. (1997). Genesis and dynamics of coherent structures in near-wall turbulence. In R. Panton (Ed.), Self-sustaining Mechanisms of Wall Turbulence (pp. 385–422)., Advances in Fluid Mechanics. Computational Mechanics Publications.

    Google Scholar 

  • Schoppa, W., & Hussain, A. K. M. F. (2000). Coherent structure dynamics in near-wall turbulence. Journal of Fluid Dynamics Research, 26, 119–139.

    Article  MathSciNet  MATH  Google Scholar 

  • Schoppa, W., & Hussain, A. K. M. F. (2002). Coherent structure generation in near-wall turbulence. Journal of Fluid Mechanics, 453, 57–108.

    Article  MathSciNet  MATH  Google Scholar 

  • Shapiro, M., & Goldenberg, M. (1993). Deposition of glass fiber particles from turbulent air flow in a pipe. Journal of Aerosol Science, 24, 65–87.

    Article  Google Scholar 

  • Soldati, A. (2005), Particles turbulence interactions in boundary layers. ZAMM—Journal of Applied Mathematics and Mechanics, 85, 683–699.

    Google Scholar 

  • Soldati, A., & Marchioli, C. (2009). Physics and modelling of turbulent particle deposition and entrainment: Review of a systematic study. International Journal of Multiphase Flow, 35, 827–839.

    Article  Google Scholar 

  • Soldati, A., & Marchioli, C. (2012). Sediment transport in steady turbulent boundary layers: Potentials, limitations, and perspectives for lagrangian tracking in dns and les. Advances in Water Resources, 48, 18–30.

    Article  Google Scholar 

  • Soltani, M., & Ahmadi, G. (1995). Direct numerical simulation of particle entrainment in turbulent channel flow. Physics of Fluids A, 7, 647–657.

    Google Scholar 

  • Takemura, F., & Magnaudet, J. (2003). The transverse force on clean and contaminated bubbles rising near a vertical wall at moderate reynolds number. Journal of Fluid Mechanics, 495, 235–253.

    Article  MATH  Google Scholar 

  • Tang, L., Wen, F., Yang, Y., Crowe, C. T., Chung, J. N., & Troutt, T. R. (1992). Self-organizing particle dispersion mechanism in a plane wake. Physics of Fluids A, 4, 2244–2250.

    Google Scholar 

  • Uijttewaal, W. S. J., & Oliemans, R. V. A. (1996). Particle dispersion and deposition in direct numerical and large eddy simulations of vertical pipe flows. Physics of Fluids, 8, 2590–2604.

    Article  MATH  Google Scholar 

  • Wang, Q., & Squires, K. D. (1996). Large eddy simulation of particle deposition in a vertical turbulent channel flow. International Journal of Multiphase Flow, 22, 667–683.

    Article  MATH  Google Scholar 

  • Wells, M. R., & Stock, D. E. (1983). The effect of crossing trajectories on the dispersion of particles in turbulent flow. Journal of Fluid Mechanics, 136, 31–62.

    Article  Google Scholar 

  • Widera, P., Ghorbaniasl, G., & Lacor, C. (2009). Study of the sediment transport over flat and wavy bottom using large-eddy simulation. Journal of Turbulence, 10, 1–20.

    Article  MATH  Google Scholar 

  • Yeung, P. K., Pope, S. B., & Sawford, B. L. (2006). Reynolds number dependence of lagrangian statistics in large numerical simulations of isotropic turbulence. Journal of Turbulence, 7, 1–12.

    Article  MathSciNet  MATH  Google Scholar 

  • Young, J., & Leeming, A. (1997). A theory of particle deposition in turbulent channel flow. Journal of Fluid Mechanics, 340, 129–159.

    Article  MATH  Google Scholar 

  • Young, J. B., & Hanratty, T. J. (1991). Trapping of solid particles at the wall in a turbulent flow. AIChE Journal, 37, 1529–1536.

    Article  Google Scholar 

  • Zhang, H., Ahmadi, G., Fan, F. G., & McLaughlin, J. B. (2001). Ellipsoidal particles transport and deposition in turbulent channel flows. International Journal of Multiphase Flow, 27, 971–1009.

    Article  MATH  Google Scholar 

  • Zhao, L., Marchioli, C., & Andersson, H. I. (2014). Slip velocity of rigid fibers in turbulent channel flow. Physics of Fluids, 26, 063302.

    Google Scholar 

  • Zonta, F., Marchioli, C., & Soldati, A. (2013). Particle and droplet deposition in turbulent swirled pipe flow. International Journal of Multiphase Flow, 56, 172–183.

    Article  Google Scholar 

Download references

Acknowledgments

All the results shown in this Section but those shown in Fig. 28 have been obtained at the Laboratory of Fluid Mechanics directed by Prof. Alfredo Soldati, to whom I am very grateful. I am also very grateful to the colleagues contacted for the use of their images in this Section.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian Marchioli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 CISM International Centre for Mechanical Sciences

About this chapter

Cite this chapter

Marchioli, C. (2017). Physics and Modelling of Particle Deposition and Resuspension in Wall-Bounded Turbulence. In: Minier, JP., Pozorski, J. (eds) Particles in Wall-Bounded Turbulent Flows: Deposition, Re-Suspension and Agglomeration. CISM International Centre for Mechanical Sciences, vol 571. Springer, Cham. https://doi.org/10.1007/978-3-319-41567-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41567-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41566-6

  • Online ISBN: 978-3-319-41567-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics