Skip to main content
Log in

Localization of the site of the haloperidol-induced, prolactin-mediated increase of dopamine turnover in the median eminence: Studies in rats with complete hypothalamic deafferentations

  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Summary

Complete hypothalamic deafferentations were made in male rats with a modified Haläsz knife to isolate tuberoinfundibular dopaminergic neurons from the rest of the brain. A radioenzymatic procedure was employed to quantify dopamine and norepinephrine concentrations in various regions of the hypothalamus. Dopamine concentrations were unaltered while norepinephrine concentrations were reduced 50% in the median eminence and hypothalamic island 16–33 days after surgery. Basal serum prolactin concentrations were unaltered in these rats but were elevated 16 hours after the injection of haloperidol and 1 hour afterα-methyltyrosine. The isolation of tuberoinfundibular neurons from the rest of the brain did not alter the ability of haloperidol to increase the rate ofα-methyltyrosine-induced decline of dopamine in the median eminence. These results indicate that the haloperidol-induced, prolactin-mediated increase of dopamine turnover in the median eminence results from a direct action of this hormone on neurons within the medial basal hypothalamus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andén, N.-E., Roos, B.-E., Werdinius, B. Effects of chlorpromazine, haloperidol and reserpine on the levels of phenolic acids in rabbit corpus striatum. Life Sci.3, 149–158 (1969).

    Google Scholar 

  • Annunziato, L., Di Renzo, G., Lombardi, G., Scopacasa, F., Schettini, G., Preziosi, P., Scapagnini, U. Role of central noradrenergic neurons in control of thyrotropin secretion in rats. Endocrinology100, 738–744 (1977).

    Google Scholar 

  • Ben-Jonathan, N., Porter, J. C. A sensitive radioenzymatic assay for dopamine, norepinephrine, and epinephrine in plasma and tissue. Endocrinology98, 1497–1507 (1976).

    Google Scholar 

  • Bertler, A., Falck, B., Owman, C., Rosengren, E. The localization of monoaminergic blood-brain barrier mechanisms. Pharmacol. Rev.18, 369–385 (1966).

    Google Scholar 

  • Björklund, A., Moore, R. Y., Nobin, A., Stenevi, U. The organization of tubero-hypophyseal and reticulo-infundibular catecholamine neuron system in the rat brain. Brain Res.51, 171–191 (1973).

    Google Scholar 

  • Brownstein, M. J., Palkovits, M., Tappaz, M. L., Saavedra, J. M., Kizer, J. S. Effect of surgical isolation of the hypothalamus on its neurotransmitter content. Brain Res.117, 287–295 (1976).

    Google Scholar 

  • Carlsson, A., Lindqvist, M. Effect of chlorpromazine or haloperidol on formation of 3-methoxytyramine and normetanephrine in mouse brain. Acta Pharmacol. (Kbh.)20, 140–143 (1963).

    Google Scholar 

  • Clemens, J. A., Gallo, R. V., Whitmoyer, D. I., Sawyer, C. H. Prolactin responsive neurons in the rabbit hypothalamus. Brain Res.25, 371–379 (1971).

    Google Scholar 

  • Cuello, A. C., Weiner, R. L. Ganong, W. F. Effect of lateral deafferentation on the morphology and catecholamine content of the mediobasal hypothalamus. Brain Res.59, 191–200 (1973).

    Google Scholar 

  • Dang, B. T., Voogt, J. L. Termination of pseudopregnancy following hypothalamic implantation of prolactin. Endocrinology100, 873–880 (1977).

    Google Scholar 

  • Duke, J. E., Smith, G. C. The blood-brain barrier in the hypothalamohypophyseal complex. J. Anat. (Lond.)118, 395–396 (1974).

    Google Scholar 

  • Eikenburg, D. C., Ravitz, A. J., Gudelsky, G. A., Moore, K. E. Effects of estrogen on prolactin and tuberoinfundibular dopaminergic neurons. J. Neural Transmission45, 235–244 (1977).

    Google Scholar 

  • Fuxe, K. Cellular localization of monoamines in the median eminence and infundibular stem of some mammals. Acta Physiol. Scand.58, 383–384 (1963).

    Google Scholar 

  • Fuxe, K., Agnati, L., Tsuchiya, K., Hökfelt, T., Johansson, O., Jonsson, G., Lindbrink, P., Löfström, A., Ungerstedt, U. Effect of antipsychotic drugs on central catecholamine neurons of rat brain. In: Antipsychotic drugs, Pharmacodynamics and Pharmacokinetics (Sedvall, G., ed.), pp. 117–132. New York: Pergamon Press. 1975.

    Google Scholar 

  • Fuxe, K., Hökfelt, T., Nilsson, O. Castration, sex hormones, and tuberoinfundibular dopamine neurons. Neuroendocrinology5, 107–120 (1969).

    Google Scholar 

  • Gudelsky, G. A., Moore, K. E. A comparison of the effects of haloperidol on dopamine turnover in the striatum, olfactory tubercle and median eminence. J. Pharmacol. Exp. Ther.202, 149–156 (1977).

    Google Scholar 

  • Gudelsky, G. A., Simpkins, J., Mueller, G. P., Meites, J., Moore, K. E. Selective actions of prolactin on catecholamine turnover in the hypothalamus and on serum LH and FSH. Neuroendocrinology22, 206–215 (1976).

    Google Scholar 

  • Hökfelt, T., Fuxe, K. Effects of prolactin and ergot alkaloids on the tuberoinfundibular dopamine (DA) neurons. Neuroendocrinology9, 100–122 (1972).

    Google Scholar 

  • Krulich, L., Hefco, E., Aschenbrenner, J. E. Mechanism of the effects of hypothalamic deafferentation on prolactin secretion in the rat. Endocrinology96, 107–118 (1975).

    Google Scholar 

  • Löfström, A., Jonsson, G., Fuxe, K. Microfluorometric quantitation of catecholamine fluorescence in rat median eminence. I. Aspects on the distribution of dopamine and noradrenaline nerve terminals. J. Histochem. Cytochem.24, 415–429 (1976).

    Google Scholar 

  • Lowry, O. H., Rosenbrough, N. J., Farr, A. L., Randall, R. J. Protein measurement with the Folin phenol reagent. J. Biol. Chem.193, 265–275 (1951).

    Google Scholar 

  • Mac Leod, R. M. Regulation of prolactin secretion. In: Frontiers in Neuroendocrinology (Martini, L., Ganong, W. F., eds.), pp. 169–194. New York: Raven Press. 1976.

    Google Scholar 

  • Poulain, P., Carette, B. Actions of applied prolactin on septal and preoptic neurons in the guinea pig. Brain Res.116, 172–176 (1976).

    Google Scholar 

  • Sokal, R. R., Rohlf, F. J. Biometry. San Francisco: W. H. Freeman and Co. 1969.

    Google Scholar 

  • Tindal, J. S., Knoggs, G. S. Pathways in the forebrain of the rat concerned with the release of prolactin. Brain Res.119, 211–221 (1977).

    Google Scholar 

  • Turpen, C., Dunn, J. D. The effect of isolation or ablation of the medial basal hypothalamus on serum prolactin levels in male rats. Neuroendocrinology20, 224–234 (1976).

    Google Scholar 

  • Voogt, J. L., Meites, J. Suppression of proestrous and suckling-induced increase in serum prolactin by hypothalamic implant of prolactin. Proc. Soc. Exp. Biol. Med.142, 1056–1058 (1973).

    Google Scholar 

  • Weiner, R. I. Role of brain catecholamines in the control of LH and prolactin secretion. In: Hypothalamic Hormones (Motta, M., Crosignani, P. G., Martini, L., eds.), pp. 249–253. London: Academic Press. 1975.

    Google Scholar 

  • Weiner, R. I., Shryne, J. E., Gorski, R. A., Sawyer, C. H. Changes in the catecholamine content of the rat hypothalamus following deafferentation. Endocrinology90, 867–873 (1972).

    Google Scholar 

  • Wilk, S., Watson, E., Stanley, M. E. Differential sensitivity of two dopaminergic structures in rat brain to haloperidol and to clozapine. J. Pharmacol. Exp. Ther.195, 265–270 (1975).

    Google Scholar 

  • Yamada, Y. Effects of iontophoretically-applied prolactin on unit activity of the rat brain. Neuroendocrinology18, 263–271 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gudelsky, G.A., Annunziato, L. & Moore, K.E. Localization of the site of the haloperidol-induced, prolactin-mediated increase of dopamine turnover in the median eminence: Studies in rats with complete hypothalamic deafferentations. J. Neural Transmission 42, 181–192 (1978). https://doi.org/10.1007/BF01675309

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01675309

Keywords

Navigation