Skip to main content

Advertisement

Log in

When bone mass fails to predict bone failure

  • Session I
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

New technology for noninvasive measurement of bone mass has enabled many studies of bone mass and its relationship to fracture, which challenge the view that bone mass is the only relevant factor in the etiology of fractures. Several studies have reported ROC curves that generally show values of about 80%. No convincing evidence suggests that one technique is superior to another. The reported relative risks or odds ratios for a fracture usually range between 1.2 and 2.5 per SD. There is no doubt that the risk of a fracture increases as the bone density decreases. However, even with a low bone mass, the risk ofnot fracturing a bone over the next year is over 90%. Most of the data suggest that patients with severe vertebral fractures have lower bone mass than those with mild fractures, but some women with similarly low bone mass have mild or no fractures. The weight of the evidence suggests that age has an effect on fracture incidence which is independent of bone mass. Trauma is such a major factor that it is surprising to find almost no studies that have controlled for it. The relationship between bone mass and bone failure is strong, but other factors must also be contributing to the bone failure which, like heart failure or renal failure, is a complex, multifactorial disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Newton-John HF, Morgan DB (1970) The loss of bone with age, osteoporosis, and fractures. Clin Orthop Rel Res 71:229–251

    Google Scholar 

  2. Overgaard K, Hansen MA, Riis BJ, Christiansen C (1992) Discriminatory ability of bone mass measurements (SPA and DEXA) for fractures in elderly postmenopausal women. Calcif Tissue Int 50:30–35

    Google Scholar 

  3. Nuti R, Martini G (1992) Measurements of bone mineral density by DXA total body absorptiometry in different skeletal sites in postmenopausal osteoporosis. Bone 13:173–178

    Google Scholar 

  4. Ryan PJ, Blake GM, Fogelman (1992) Fracture thresholds in osteoporosis: implications for hormone replacement treatment. Ann Rheum Dis 51:1063–1065

    Google Scholar 

  5. Libanati CR, Schulz EE, Shook JE, Bock M, Baylink DJ (1992) Hip mineral density in females with a recent hip fracture. J Clin Endocrinol Metab 74:351–356

    Google Scholar 

  6. Kanbara Y, Mizuno K, Hirohata K, Shiraishi H (1992) A comparison of the bone mineral density of the vertebral bodies and the hip in elderly females with hip fractures. Kobe J Med Sci 38:21–36

    Google Scholar 

  7. Vega E, Mautalen G, Gomez H, Garrido A, Melo L, Sahores AO (1991) Bone mineral density in patients with cervical and trochanteric fractures of the proximal femur. Osteoporos Int 1:81–86

    Google Scholar 

  8. Perloff JJ, McDermott MT, Perloff KG, Blue PW, Enzenhauer R, Sieck E, Chantelois AE, Dolbow A, Kidd GS (1991) Reduced bone mineral content is a risk factor for hip fractures. Orthop Rev 20:690–698

    Google Scholar 

  9. Chevalley T, Rizzoli R, Nydegger V, Slosman D, Tkatch L, Rapin CH, Vasey H, Bonjour JP (1991) Preferential low bone mineral density of the femoral neck in patients with a recent fracture of the proximal femur. Osteoporosis Int 1:147–154

    Google Scholar 

  10. Griffin MG, Rupich RC, Avioli LV, Pacifici R (1991) A comparison of dual energy radiography measurements at the lumbar spine and proximal femur for the diagnosis of osteoporosis. J Clin Endocrinol Metab 73:1164–1169

    Google Scholar 

  11. Cleghorn DB, Polly KJ, Bellon MJ, Chatterton J, Baghurse PA, Nordin BEC (1991) Fracture rates as a function of forearm mineral density in normal postmenopausal women: retrospective and prospective data. Calcif Tissue Int 49:161–163

    Google Scholar 

  12. Pouilles JM, Tremollieres F, Todorovsky N, Ribot C (1991) Precision and sensitivity of dual-energy x-ray absorptiometry in spinal osteoporosis. J Bone Miner Res 9:997–1002

    Google Scholar 

  13. Pacifici R, Rupich R, Griffin M, Chines A, Susman N, Avioli LV (1990) Dual energy radiography versus quantitative computer tomography for the diagnosis of osteoporosis. J Clin Endocrinol Metab 70:705–710

    Google Scholar 

  14. Mautalen C, Vega E, Ghiringhelli G, Fromm G (1990) Bone diminution of osteoporotic females at different skeletal sites. Calcif Tissue Int 46:217–221

    Google Scholar 

  15. Eastell R, Riggs BL, Wahner HW, O'Fallon WM, Amadio PC, Melton LJ (1989) Colles' fracture and bone density of the ultradistal radius. J Bone Miner Res 4:607–613

    Google Scholar 

  16. Lancaster EK, Evans RA, Kos S, Hills E, Dunstan CR, Wong SYP (1989) Measurement of bone in the os calcis: a clinical evaluation. J Bone Miner Res 4:507–514

    Google Scholar 

  17. Gotfredsen A, Nilas L, Pødenphant J, Hadverg A, Christiansen C (1989) Regional bone mineral in healthy and osteoporotic women: a cross-sectional study. Scand J Clin Lab Invest 49:739–749

    Google Scholar 

  18. Melton LJ, Kan SH, Frye MA, Wahner HW, O'Fallon WM, Riggs BL (1989) Epidemiology of vertebral fractures in women. Am J Epidemiol 129:1000–1011

    Google Scholar 

  19. Eastell R, Wahner HW, O'Fallon WM, Amadio PC, Melton LJ, Riggs BL (1989) Unequal decrease in bone density of lumbar spine and ultradistal radius in Colles' and vertebral fracture syndromes. J Clin Invest 83:168–174

    Google Scholar 

  20. Price RI, Barnes MP, Gutteridge DH, Baron-Hay M, Prince RL, Retallack RW, Hickling C (1989) Ultradistal and cortical forearm bone density in the assessment of postmenopausal bone loss and nonaxial fracture risk. J Bone Miner Res 4:149–155

    Google Scholar 

  21. Meltzer M, Lessig HJ, Siegel JA (1989) Bone mineral density and fracture in postmenopausal women. Calcif Tissue Int 45:142–145

    Google Scholar 

  22. Heuck AF, Block J, Glueer CC, Steiger P, Genant HK (1989) Mild versus definite osteoporosis: comparison of bone densitometry techniques using different statistical models. J Bone Miner Res 4:891–900

    Google Scholar 

  23. Van Berkum FNR, Birkenhager JC, Van Veen LCP, Zeelenberg J, Birkenhager-Frenkel DH, Trouerback WT, Stijnen T, Pols HAP (1989) Noninvasive axial and peripheral assessment of bone mineral content: a comparison between osteoporotic women and normal subjects. J Bone Miner Res 4:679–685

    Google Scholar 

  24. Nordin BEC, Wishart JM, Horowitz M, Need AG, Bridges A, Bellon M (1988) The relation between forearm and vertebral mineral density and fracture in postmenopausal women. Bone Miner 5:21–33

    Google Scholar 

  25. Mazess RB, Barden H, Ettinger M, Schultz E (1988) Bone density of the radius, spine, and proximal femur in osteoporosis. J Bone Miner Res 3:13–18

    Google Scholar 

  26. Cornell Ch, Schwartz S, Bansal M, Lane JM, Bulloug P (1988) Quantification of osteopenia in hip fracture patients. J Orthop Trauma 2:212–217

    Google Scholar 

  27. Horowitz M, Wishart JM, Bochner M, Need AG, Chatterton BE, Nordin BEC (1988) Mineral density of bone in the forearm in premenopausal women with fractured wrists. BMJ 297:1314–1315

    Google Scholar 

  28. Pødenphant J, Herss Nielsen VA, Riis BJ, Gotfredsen A, Christiansen C (1987) Bone mass, bone structure and vertebral fractures in osteoporotic patients. Bone 8:127–130

    Google Scholar 

  29. Nilas L, Pødenphant J, Riis BJ, Gotfredsen A, Christiansen C (1987) Usefulness of regional bone measurements in patients with osteoporotic fractures of the spine and distal forearm. J Nucl Med 28:960–965

    Google Scholar 

  30. Pacifici R, Susman N, Carr PL, Birge SJ, Avioli LV (1987) Single and dual energy tomographic analysis of spinal trabecular bone: a comparative study in normal and osteoporotic women. J Clin Endocrinol Metab 64:209–214

    Google Scholar 

  31. Ott SM, Kilcoyne RF, Chesnut CH (1987) Ability of four different techniques of measuring bone mass to diagnose vertebral fractures in postmenopausal women. J Bone Miner Res 2:201–210

    Google Scholar 

  32. Buchanan JB, Myers C, Greer RB, Lloyd T, Varano LA (1987) Assessment of the risk of vertebral fracture in menopausal women. J Bone Joint Surg 69A:212–217

    Google Scholar 

  33. Raymakers JA, Hoekstra O, van Patten J, Kerkhoff H, Duursma SA (1986) Fracture prevalence and bone mineral mass in osteoporosis measured with computed tomography and dual energy photon absorptiometry. Skeletal Radiol 15:191–197

    Google Scholar 

  34. Cohn SH, Aloia JF, Vaswani AN, Yuen K, Yasumura S, Ellis KJ (1986) Women at risk for developing osteoporosis: determination by total body neutron activation analysis and photon absorptiometry. Calcif Tissue Int 38:9–15

    Google Scholar 

  35. Melton LJ, Wahner HW, Richelson LS, O'Fallon WM, Riggs BL (1986) Osteoporosis and the risk of hip fracture. Am J Epidemiol 124:254–261

    Google Scholar 

  36. Cann CE, Genant HK, Kolb FO, Ettinger B (1985) Quantitative computed tomography for prediction of vertebral fracture risk. Bone 6:1–7

    Google Scholar 

  37. Harma M, Karjalainen P, Hoikka V, Alhava E (1985) Bone density in women with spinal and hip fractures. Acta Orthop Scand 56:380–385

    Google Scholar 

  38. Mazess RB, Peppier WW, Chesney RW, Lange TA, Lindgren U, Smith E (1984) Total body and regional bone mineral by dual-photon absorptiometry in metabolic bone disease. Calcif Tissue Int 36:8–13

    Google Scholar 

  39. Bohr H, Schaadt O (1983) Bone mineral content of femoral bone and the lumbar spine measured in women with fracture of the femoral neck by dual photon absorptiometry. Clin Orthop Res 179:240–245

    Google Scholar 

  40. Ott SM, Murano R, Lewellen TK, Nelp WB, Chesnut CH (1973) Total body calcium by neutron activation analysis in normals and osteoporotic populations: a discriminator of significant bone mass loss. J Lab Clin Med 102:637–645

    Google Scholar 

  41. Krølner B, Nielsen SP (1982) Bone mineral content of the lumbar spine in normal and osteoporotic women: cross-sectional and longitudinal studies. Clin Science 62:329–336

    Google Scholar 

  42. Riggs BL, Wahner HW, Dunn WL, Mazess RB, Offord KP, Melton LJ (1981) Differential changes in bone mineral density of the appendicular and axial skeleton with aging. J Clin Invest 67:328–335

    Google Scholar 

  43. Black DM, Cummings SR, Genant HK, Nevitt MC, Palermo L, Browner W (1992) Axial and appendicular bone density predict fractures in older women. J Bone Miner Res 7:633–638

    Google Scholar 

  44. Ross PD, Davis JW, Epstein RS, Wasnich RD (1991) Pre-existing fractures and bone mass predict vertebral fracture incidence in women. Ann Intern Med 114:919–923

    Google Scholar 

  45. Seeley DG, Browner WS, Nevitt MC, Genant HK, Scott JC, Cummings SR (1991) Which fractures are associated with low appendicular bone mass in elderly women? Ann Intern Med 115:837–842

    Google Scholar 

  46. Gardsell P, Johnell O, Nilsson BE (1991) The predictive value of bone loss for fragility fractures in women: a longitudinal study over 15 years. Calcif Tissue Int 49:90–94

    Google Scholar 

  47. Cooper C, Wickham C, Walsh K (1991) Appendicular skeletal status and hip fracture in the elderly: 14-year prospective data. Bone 12:361–364

    Google Scholar 

  48. Gardsell P, Johnell O, Nilsson BE (1990) The predictive value of forearm bone mineral content measurements in men. Bone 11:229–232

    Google Scholar 

  49. Cummings SR, Black DM, Nevitt MC, Browner WS, Cauley JA, Genant HK, Mascioli SR, Scott JC, Seeley DG, Steiger P, Vogt TM (1990) Appendicular bone density and age predict hip fracture in women. JAMA 263:665–668

    Google Scholar 

  50. Gardsell P, Johnell O, Nilsson BE (1989) Predicting fractures in women by using forearm bone densitometry. Calcif Tissue Int 44:235–242

    Google Scholar 

  51. Hui SL, Slemenda CW, Johnston CC (1988) Age and bone mass as predictors of fracture in a prospective study. J Clin Invest 81:1804–1809

    Google Scholar 

  52. Metz CE (1986) ROC methodology in radiologic imaging. Invest Radiol 21:720–733

    Google Scholar 

  53. Ott SM, Chesnut CH (1988) Diagnostic sensitivity of bone densitometry. J Bone Miner Res 3:122–123

    Google Scholar 

  54. Ross PD, Davis JW, Vogel JM, Wasnich RD (1990) A critical review of bone mass and the risk of fractures in osteoporosis. Calcif Tissue Int 46:149–161

    Google Scholar 

  55. Ott SM, Kilcoyne RF, Chesnut CH (1988) Comparisons among methods of measuring bone mass and relationship to severity of vertebral fractures in osteoporosis. J Clin Endocrinol Metab 66:501–507

    Google Scholar 

  56. Bernecker P, Pietschmann P, Winkelbauer F, Krexnew E, Resch H, Willvonseder R (1992) The spine deformity index in osteoporosis is not related to bone mineral and ultrasound measurements. Br J Radiol 65:393–396

    Google Scholar 

  57. Odvina CV, Wergedal JE, Libanati CR, Schulz EE, Baylink DJ (1988) Relationship between trabecular vertebral body density and fractures: a quantitative definition of spinal osteoporosis. Metabolism 37:221–228

    Google Scholar 

  58. Reinbold WD, Genant HK, Reiser UJ, Harris ST, Ettinger B (1986) Bone mineral content in early postmenopausal and postmenopausal osteoporosic women: comparison of measurement methods. Radiology 160:469–478

    Google Scholar 

  59. Buchanan JR, Myers C, Greer RB (1988) Determinants of atraumatic vertebral fracture rates in menopausal women: biologic v mechanical factors. Metabolism 37:400–404

    Google Scholar 

  60. Kaplan ITS, Dalinka M, Karp JS, Fallon MD, Katz M, Boden S, Simpson E, Attie M, Haddad JG (1989) Quantitative computed tomography reflects vertebral fracture morbidity in osteopenic patients

  61. Paterson CR, Mole PA, Rae MH (1990) Osteogenesis imperfecta: Is osteoporosis an essential feature? In: Christiansen C, Overgaard K (eds) Osteoporosis 1990. Osteopress ApS, Copenhagen, pp 1589–1591

    Google Scholar 

  62. Kleerekoper M, Balena R (1991) Fluorides and osteoporosis. Ann Rev Nutr 11:309–324

    Google Scholar 

  63. Riggs BL, Hodgson SF, O'Fallon M, Chao EYS, Wanner HW, Muhs JM, Cedel SL, Melton LJ (1990) Effect of fluoride treatment on the fracture rate in postmenopausal women with osteoporosis. N Engl J Med 322:802–809

    Google Scholar 

  64. Cooper C, Barker DJP, Morris J, Briggs RSJ (1987) Osteoporosis, falls, and age in fracture of the proximal femur. BMJ 295:13–15

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ott, S.M. When bone mass fails to predict bone failure. Calcif Tissue Int 53 (Suppl 1), S7–S13 (1993). https://doi.org/10.1007/BF01673395

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01673395

Key words

Navigation