Skip to main content

Tools for Assessing Fracture Risk and for Treatment Monitoring

  • Chapter
The Duration and Safety of Osteoporosis Treatment

Abstract

The suboptimal performance of bone mineral density (BMD) as the sole predictor of fracture risk and treatment decision-making has led to the development of risk prediction algorithms that estimate fracture probability using multiple risk factors for fracture, including basic demographic and physical characteristics, personal and family history, other health conditions, and medication use. This chapter reviews selected risk assessment tools, based upon absolute fracture probability and their potential for treatment decision-making and monitoring. Validated prognostic models for fracture risk assessment can guide clinicians and individuals in understanding the risk of having an osteoporosis-related fracture and inform their decision-making to mitigate these risks. Fracture probability algorithms that have been independently evaluated in at least one other cohort include the World Health Organization FRAX®, the Garvan Fracture Risk Calculator, and the QResearch Database’s QFracture®. The role for risk prediction tools is expanding beyond the initial decision regarding treatment initiation, but data are limited. For example, FRAX appears to be useful in assessing individuals on treatment. However, fracture probability is not particularly responsive to osteoporosis treatments and cannot be recommended as a target for goal-directed therapy. More treatment-responsive measures need to be identified to better inform the osteoporosis management paradigm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    *Important References

     **Very Important References

References

*Important References

 **Very Important References

  1. Stone KL, Seeley DG, Lui LY, Cauley JA, Ensrud K, Browner WS, et al. BMD at multiple sites and risk of fracture of multiple types: long-term results from the Study of Osteoporotic Fractures. J Bone Miner Res. 2003;18(11):1947–54.

    Article  PubMed  Google Scholar 

  2. Kanis JA, Melton III LJ, Christiansen C, Johnston CC, Khaltaev N. The diagnosis of osteoporosis. J Bone Miner Res. 1994;9(8):1137–41.

    Article  PubMed  CAS  Google Scholar 

  3. Looker AC, Wahner HW, Dunn WL, Calvo MS, Harris TB, Heyse SP, et al. Updated data on proximal femur bone mineral levels of US adults. Osteoporos Int. 1998;8(5):468–89.

    Article  PubMed  CAS  Google Scholar 

  4. Kanis JA, McCloskey EV, Johansson H, Oden A, Melton III LJ, Khaltaev N. A reference standard for the description of osteoporosis. Bone. 2008;42(3):467–75.

    Article  PubMed  CAS  Google Scholar 

  5. Johnell O, Kanis JA, Oden A, Johansson H, De Laet C, Delmas P, et al. Predictive value of BMD for hip and other fractures. J Bone Miner Res. 2005;20(7):1185–94.

    Article  PubMed  Google Scholar 

  6. Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ. 1996;312(7041):1254–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Siris ES, Chen YT, Abbott TA, Barrett-Connor E, Miller PD, Wehren LE, et al. Bone mineral density thresholds for pharmacological intervention to prevent fractures. Arch Intern Med. 2004;164(10):1108–12.

    Article  PubMed  Google Scholar 

  8. Schuit SC, Van der KM, Weel AE, De Laet CE, Burger H, Seeman E, et al. Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone. 2004;34(1):195–202.

    Article  PubMed  CAS  Google Scholar 

  9. Cranney A, Jamal SA, Tsang JF, Josse RG, Leslie WD. Low bone mineral density and fracture burden in postmenopausal women. CMAJ. 2007;177(6):575–80.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Steyerberg EW. Clinical prediction models: a practical approach to development, validation, and updating. New York: Springer; 2008.

    Google Scholar 

  11. Altman DG, Vergouwe Y, Royston P, Moons KG. Prognosis and prognostic research: validating a prognostic model. BMJ. 2009;338:1432–5.

    Article  Google Scholar 

  12. Royston P, Moons KG, Altman DG, Vergouwe Y. Prognosis and prognostic research: developing a prognostic model. BMJ. 2009;338:1373–7.

    Article  Google Scholar 

  13. Steyerberg EW, Vickers AJ, Cook NR, Gerds T, Gonen M, Obuchowski N, et al. Assessing the performance of prediction models: a framework for traditional and novel measures. Epidemiology. 2010;21(1):128–38.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Leslie WD, Lix LM. Comparison between various fracture risk assessment tools. Osteoporos Int. 2014;25(1):1–21.

    Article  PubMed  CAS  Google Scholar 

  15. Ikeda M, Ishigaki T, Yamauchi K. Relationship between Brier score and area under the binormal ROC curve. Comput Methods Programs Biomed. 2002;67(3):187–94.

    Article  PubMed  Google Scholar 

  16. Harrell Jr FE, Lee KL, Mark DB. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med. 1996;15(4):361–87.

    Article  PubMed  Google Scholar 

  17. Kanis JA, Oden A, Johansson H, McCloskey E. Pitfalls in the external validation of FRAX. Osteoporos Int. 2012;23(2):423–31.

    Article  PubMed  CAS  Google Scholar 

  18. Pencina MJ, D’Agostino Sr RB, D’Agostino Jr RB, Vasan RS. Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med. 2008;27(2):157–72.

    Article  PubMed  Google Scholar 

  19. Leening MJ, Vedder MM, Witteman JC, Pencina MJ, Steyerberg EW. Net reclassification improvement: computation, interpretation, and controversies: a literature review and clinician’s guide. Ann Intern Med. 2014;160(2):122–31.

    Article  PubMed  Google Scholar 

  20. Pressman AR, Lo JC, Chandra M, Ettinger B. Methods for assessing fracture risk prediction models: experience with FRAX in a large integrated health care delivery system. J Clin Densitom. 2011;14(4):407–15.

    Article  PubMed  Google Scholar 

  21. Leslie WD, Lix LM. Absolute fracture risk assessment using lumbar spine and femoral neck bone density measurements: derivation and validation of a hybrid system. J Bone Miner Res. 2011;26(3):460–7.

    Article  PubMed  Google Scholar 

  22. Gourlay ML, Powers JM, Lui LY, Ensrud KE. Clinical performance of osteoporosis risk assessment tools in women aged 67 years and older. Osteoporos Int. 2008;19(8):1175–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Rud B, Hilden J, Hyldstrup L, Hrobjartsson A. The Osteoporosis Self-Assessment Tool versus alternative tests for selecting postmenopausal women for bone mineral density assessment: a comparative systematic review of accuracy. Osteoporos Int. 2009;20(4):599–607.

    Article  PubMed  CAS  Google Scholar 

  24. Schwartz EN, Steinberg DM. Prescreening tools to determine who needs DXA. Curr Osteoporos Rep. 2006;4(4):148–52.

    Article  PubMed  Google Scholar 

  25. Kanis JA, Oden A, Johansson H, Borgstrom F, Strom O, McCloskey E. FRAX and its applications to clinical practice. Bone. 2009;44(5):734–43.

    Article  PubMed  Google Scholar 

  26. Kanis JA, on behalf of the World Health Organization Scientific Group. Assessment of osteoporosis at the primary health-care level. Technical Report. Accessible at: http://www.shef.ac.uk/FRAX/pdfs/WHO_Technical_Report.pdf. Sheffield: University of Sheffield; 2007.

  27. Kanis JA, McCloskey E, Johansson H, Oden A, Leslie WD. FRAX((R)) with and without bone mineral density. Calcif Tissue Int. 2012;90(1):1–13.

    Article  PubMed  CAS  Google Scholar 

  28. Leslie WD, Morin S, Lix LM, Johansson H, Oden A, McCloskey E, et al. Fracture risk assessment without bone density measurement in routine clinical practice. Osteoporos Int. 2012;23(1):75–85.

    Article  PubMed  CAS  Google Scholar 

  29. Satagopan JM, Ben-Porat L, Berwick M, Robson M, Kutler D, Auerbach AD. A note on competing risks in survival data analysis. Br J Cancer. 2004;91(7):1229–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Leslie WD, Lix LM, Wu X. Competing mortality and fracture risk assessment. Osteoporos Int. 2013;24(2):681–8.

    Article  PubMed  CAS  Google Scholar 

  31. Kanis JA, Oden A, McCloskey EV, Johansson H, Wahl DA, Cooper C. A systematic review of hip fracture incidence and probability of fracture worldwide. Osteoporos Int. 2012;23(9):2239–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Kanis JA, Johnell O, Oden A, Sembo I, Redlund-Johnell I, Dawson A, et al. Long-term risk of osteoporotic fracture in Malmo. Osteoporos Int. 2000;11(8):669–74.

    Article  PubMed  CAS  Google Scholar 

  33. Kanis JA, Oden A, Johnell O, Jonsson B, De Laet C, Dawson A. The burden of osteoporotic fractures: a method for setting intervention thresholds. Osteoporos Int. 2001;12(5):417–27.

    Article  PubMed  CAS  Google Scholar 

  34. Lam A, Leslie WD, Lix LM, Yogendran M, Morin SN, Majumdar SR. Major osteoporotic to hip fracture ratios in Canadian men and women with Swedish comparisons: a population based analysis. J Bone Miner Res. 2013;29(5):1067–73.

    Article  Google Scholar 

  35. **Kanis JA, Oden A, Johnell O, Johansson H, De Laet C, Brown J, et al. The use of clinical risk factors enhances the performance of BMD in the prediction of hip and osteoporotic fractures in men and women. Osteoporos Int. 2007;18(8):1033–46. **This seminal report from the WHO Collaborating Centre for Metabolic Bone Diseases evaluated the performance characteristics of clinical risk factors with and without BMD in eleven independent population-based cohorts. The models developed provide the basis for the integrated use of validated clinical risk factors in men and women to aid in fracture risk prediction.

    Article  PubMed  CAS  Google Scholar 

  36. Fitzgerald G, Compston JE, Chapurlat RD, Pfeilschifter J, Cooper C, Hosmer Jr DW, et al. Empirically based composite fracture prediction model from the Global Longitudinal Study of Osteoporosis in Postmenopausal Women (GLOW). J Clin Endocrinol Metab. 2014;99(3):817–26.

    PubMed  CAS  Google Scholar 

  37. Sornay-Rendu E, Munoz F, Delmas PD, Chapurlat RD. The FRAX tool in French women: how well does it describe the real incidence of fracture in the OFELY cohort? J Bone Miner Res. 2010;25(10):2101–7.

    Article  PubMed  Google Scholar 

  38. Tremollieres FA, Pouilles JM, Drewniak N, Laparra J, Ribot CA, Dargent-Molina P. Fracture risk prediction using BMD and clinical risk factors in early postmenopausal women: sensitivity of the WHO FRAX tool. J Bone Miner Res. 2010;25(5):1002–9.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Leslie WD, Lix LM, Langsetmo L, Berger C, Goltzman D, Hanley DA, et al. Construction of a FRAX((R)) model for the assessment of fracture probability in Canada and implications for treatment. Osteoporos Int. 2011;22(3):817–27.

    Article  PubMed  CAS  Google Scholar 

  40. Leslie WD, Lix LM, Johansson H, Oden A, McCloskey E, Kanis JA. Independent clinical validation of a Canadian FRAX tool: fracture prediction and model calibration. J Bone Miner Res. 2010;25(11):2350–8.

    Article  PubMed  Google Scholar 

  41. Fraser LA, Langsetmo L, Berger C, Ioannidis G, Goltzman D, Adachi JD, et al. Fracture prediction and calibration of a Canadian FRAX(R) tool: a population-based report from CaMos. Osteoporos Int. 2011;22(3):829–37.

    Article  PubMed  Google Scholar 

  42. Czerwinski E, Kanis JA, Osieleniec J, Kumorek A, Milert A, Johansson H, et al. Evaluation of FRAX to characterise fracture risk in Poland. Osteoporos Int. 2011;22(9):2507–12.

    Article  PubMed  CAS  Google Scholar 

  43. Tamaki J, Iki M, Kadowaki E, Sato Y, Kajita E, Kagamimori S, et al. Fracture risk prediction using FRAX(R): a 10-year follow-up survey of the Japanese Population-Based Osteoporosis (JPOS) Cohort Study. Osteoporos Int. 2011;22(12):3037–45.

    Article  PubMed  CAS  Google Scholar 

  44. Rubin KH, Abrahamsen B, Hermann AP, Bech M, Gram J, Brixen K. Fracture risk assessed by Fracture Risk Assessment Tool (FRAX) compared with fracture risk derived from population fracture rates. Scand J Public Health. 2011;39(3):312–8.

    Article  PubMed  Google Scholar 

  45. Premaor M, Parker RA, Cummings S, Ensrud K, Cauley JA, Lui LY, et al. Predictive value of FRAX for fracture in obese older women. J Bone Miner Res. 2013;28(1):188–95.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Ettinger B, Ensrud KE, Blackwell T, Curtis JR, Lapidus JA, Orwoll ES. Performance of FRAX in a cohort of community-dwelling, ambulatory older men: the Osteoporotic Fractures in Men (MrOS) study. Osteoporos Int. 2013;24(4):1185–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Byberg L, Gedeborg R, Cars T, Sundstrom J, Berglund L, Kilander L, et al. Prediction of fracture risk in men: a cohort study. J Bone Miner Res. 2012;27(4):797–807.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Gonzalez-Macias J, Marin F, Vila J, Diez-Perez A. Probability of fractures predicted by FRAX(R) and observed incidence in the Spanish ECOSAP Study cohort. Bone. 2012;50(1):373–7.

    Article  PubMed  Google Scholar 

  49. Tebe Cordomi C, Del Rio LM, Di GS, Casas L, Estrada MD, Kotzeva A, et al. Validation of the FRAX predictive model for major osteoporotic fracture in a historical cohort of Spanish women. J Clin Densitom. 2013;16(2):231–7.

    Article  PubMed  Google Scholar 

  50. **Kanis JA, Hans D, Cooper C, Baim S, Bilezikian JP, Binkley N, et al. Interpretation and use of FRAX in clinical practice. Osteoporos Int. 2011;22(9):2395–411. **The joint Official Positions of the ISCD and IOF are the most updated and accepted guidelines for quantitatively or qualitatively adjusting FRAX clinical risk factors and subsequent fracture probabilities for the individual patient.

    Article  PubMed  CAS  Google Scholar 

  51. Hans DB, Kanis JA, Baim S, Bilezikian JP, Binkley N, Cauley JA, et al. Joint Official Positions of the International Society for Clinical Densitometry and International Osteoporosis Foundation on FRAX((R)) Executive Summary of the 2010 Position Development Conference on Interpretation and Use of FRAX((R)) in Clinical Practice. J Clin Densitom. 2011;14(3):171–80.

    Article  PubMed  Google Scholar 

  52. Leslie WD, Lix LM, Johansson H, Oden A, McCloskey E, Kanis JA. Spine-hip discordance and fracture risk assessment: a physician-friendly FRAX enhancement. Osteoporos Int. 2011;22(3):839–47.

    Article  PubMed  CAS  Google Scholar 

  53. Kanis JA, Johansson H, Oden A, McCloskey EV. Guidance for the adjustment of FRAX according to the dose of glucocorticoids. Osteoporos Int. 2011;22(3):809–16.

    Article  PubMed  CAS  Google Scholar 

  54. Nguyen ND, Frost SA, Center JR, Eisman JA, Nguyen TV, Nguyen ND, et al. Development of a nomogram for individualizing hip fracture risk in men and women. Osteoporos Int. 2007;18(8):1109–17.

    Article  PubMed  CAS  Google Scholar 

  55. Nguyen ND, Frost SA, Center JR, Eisman JA, Nguyen TV, Nguyen ND, et al. Development of prognostic nomograms for individualizing 5-year and 10-year fracture risks. Osteoporos Int. 2008;19(10):1431–44.

    Article  PubMed  CAS  Google Scholar 

  56. Langsetmo L, Nguyen TV, Nguyen ND, Kovacs CS, Prior JC, Center JR, et al. Independent external validation of nomograms for predicting risk of low-trauma fracture and hip fracture. CMAJ. 2011;183(2):E107–14.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Hippisley-Cox J, Coupland C. Predicting risk of osteoporotic fracture in men and women in England and Wales: prospective derivation and validation of QFractureScores. BMJ. 2009;339:b4229.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hippisley-Cox J, Coupland C. Derivation and validation of updated QFracture algorithm to predict risk of osteoporotic fracture in primary care in the United Kingdom: prospective open cohort study. BMJ. 2012;344:e3427.

    Article  PubMed  Google Scholar 

  59. Collins GS, Mallett S, Altman DG. Predicting risk of osteoporotic and hip fracture in the United Kingdom: prospective independent and external validation of QFractureScores. BMJ. 2011;342:d3651.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Cummins NM, Poku EK, Towler MR, O’Driscoll OM, Ralston SH. Clinical risk factors for osteoporosis in Ireland and the UK: a comparison of FRAX and QFractureScores. Calcif Tissue Int. 2011;89(2):172–7.

    Article  PubMed  CAS  Google Scholar 

  61. Rubin KH, Friis-Holmberg T, Hermann AP, Abrahamsen B, Brixen K. Risk assessment tools to identify women with increased risk of osteoporotic fracture: complexity or simplicity? A systematic review. J Bone Miner Res. 2013;28(8):1701–17.

    Article  PubMed  Google Scholar 

  62. Whiting P, Rutjes AW, Reitsma JB, Bossuyt PM, Kleijnen J. The development of QUADAS: a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews. BMC Med Res Methodol. 2003;3:25.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Dawson-Hughes B. A revised clinician’s guide to the prevention and treatment of osteoporosis. J Clin Endocrinol Metab. 2008;93(7):2463–5.

    Article  PubMed  CAS  Google Scholar 

  64. Dawson-Hughes B, Tosteson AN, Melton III LJ, Baim S, Favus MJ, Khosla S, et al. Implications of absolute fracture risk assessment for osteoporosis practice guidelines in the USA. Osteoporos Int. 2008;19(4):449–58.

    Article  PubMed  CAS  Google Scholar 

  65. Kanis JA, Johnell O, Oden A, Johansson H, McCloskey E. FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos Int. 2008;19(4):385–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Kanis JA, McCloskey EV, Johansson H, Strom O, Borgstrom F, Oden A. Case finding for the management of osteoporosis with FRAX((R))-assessment and intervention thresholds for the UK. Osteoporos Int. 2008;19(10):1395–408.

    Article  PubMed  CAS  Google Scholar 

  67. Lippuner K, Johansson H, Kanis JA, Rizzoli R. FRAX assessment of osteoporotic fracture probability in Switzerland. Osteoporos Int. 2010;21(3):381–9.

    Article  PubMed  CAS  Google Scholar 

  68. Kanis JA, Burlet N, Cooper C, Delmas PD, Reginster JY, Borgstrom F, et al. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int. 2008;19(4):399–428.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Fujiwara S, Kasagi F, Masunari N, Naito K, Suzuki G, Fukunaga M. Fracture prediction from bone mineral density in Japanese men and women. J Bone Miner Res. 2003;18(8):1547–53.

    Article  PubMed  Google Scholar 

  70. Neuprez A, Johansson H, Kanis JA, McCloskey EV, Oden A, Bruyere O, et al. A FRAX model for the assessment of fracture probability in Belgium. Rev Med Liege. 2009;64(12):612–9.

    PubMed  CAS  Google Scholar 

  71. Papaioannou A, Morin S, Cheung AM, Atkinson S, Brown JP, Feldman S, et al. 2010 clinical practice guidelines for the diagnosis and management of osteoporosis in Canada: summary. CMAJ. 2010;182(17):1864–73.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Leslie WD, Schousboe JT. A review of osteoporosis diagnosis and treatment options in new and recently updated guidelines on case finding around the world. Curr Osteoporos Rep. 2011;9(3):129–40.

    Article  PubMed  Google Scholar 

  73. Tosteson AN, Melton III LJ, Dawson-Hughes B, Baim S, Favus MJ, Khosla S, et al. Cost-effective osteoporosis treatment thresholds: the United States perspective. Osteoporos Int. 2008;19(4):437–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Cheung E, Kung AW, Tan KC. Outcomes of applying the NOF, NOGG and Taiwanese guidelines to a cohort of Chinese early postmenopausal women. Clin Endocrinol (Oxf). 2014;80(2):200–7.

    Article  Google Scholar 

  75. Compston J, Cooper A, Cooper C, Francis R, Kanis JA, Marsh D, et al. Guidelines for the diagnosis and management of osteoporosis in postmenopausal women and men from the age of 50 years in the UK. Maturitas. 2009;62(2):105–8.

    Article  PubMed  CAS  Google Scholar 

  76. Kanis JA, McCloskey EV, Johansson H, Cooper C, Rizzoli R, Reginster JY. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int. 2013;24(1):23–57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. NICE National Institute for Health and Clinical Excellence. Osteoporosis: assessing the risk of fragility fracture. http://www.nice.org.uk/guidance/cg146/resources/guidance-osteoporosis-assessing-the-risk-of-fragility-fracture-pdf. Accessed on March 4, 2015.

  78. McCloskey EV, Beneton M, Charlesworth D, Kayan K, de Takats D, Dey A, et al. Clodronate reduces the incidence of fractures in community-dwelling elderly women unselected for osteoporosis: results of a double-blind, placebo-controlled randomized study. J Bone Miner Res. 2007;22(1):135–41.

    Article  PubMed  CAS  Google Scholar 

  79. Kanis JA, Barton IP, Johnell O. Risedronate decreases fracture risk in patients selected solely on the basis of prior vertebral fracture. Osteoporos Int. 2005;16(5):475–82.

    Article  PubMed  CAS  Google Scholar 

  80. Lyles KW, Colon-Emeric CS, Magaziner JS, Adachi JD, Pieper CF, Mautalen C, et al. Zoledronic acid and clinical fractures and mortality after hip fracture. N Engl J Med. 2007;357(18):1799–809.

    Article  PubMed  CAS  Google Scholar 

  81. Ryder KM, Cummings SR, Palermo L, Satterfield S, Bauer DC, Feldstein AC, et al. Does a history of non-vertebral fracture identify women without osteoporosis for treatment? J Gen Intern Med. 2008;23(8):1177–81.

    Article  PubMed  PubMed Central  Google Scholar 

  82. McClung MR, Geusens P, Miller PD, Zippel H, Bensen WG, Roux C, et al. Effect of risedronate on the risk of hip fracture in elderly women. Hip Intervention Program Study Group. N Engl J Med. 2001;344(5):333–40.

    Article  PubMed  CAS  Google Scholar 

  83. Sun X, Ioannidis JP, Agoritsas T, Alba AC, Guyatt G. How to use a subgroup analysis: users’ guide to the medical literature. JAMA. 2014;311(4):405–11.

    Article  PubMed  CAS  Google Scholar 

  84. McClung MR, Boonen S, Torring O, Roux C, Rizzoli R, Bone HG, et al. Effect of denosumab treatment on the risk of fractures in subgroups of women with postmenopausal osteoporosis. J Bone Miner Res. 2012;27(1):211–8.

    Article  PubMed  CAS  Google Scholar 

  85. Eastell R, Black DM, Boonen S, Adami S, Felsenberg D, Lippuner K, et al. Effect of once-yearly zoledronic acid five milligrams on fracture risk and change in femoral neck bone mineral density. J Clin Endocrinol Metab. 2009;94(9):3215–25.

    Article  PubMed  CAS  Google Scholar 

  86. Kanis JA, Johansson H, Oden A, McCloskey EV. A meta-analysis of the efficacy of raloxifene on all clinical and vertebral fractures and its dependency on FRAX. Bone. 2010;47(4):729–35.

    Article  PubMed  CAS  Google Scholar 

  87. Boonen S, McClung MR, Eastell R, El-Hajj FG, Barton IP, Delmas P. Safety and efficacy of risedronate in reducing fracture risk in osteoporotic women aged 80 and older: implications for the use of antiresorptive agents in the old and oldest old. J Am Geriatr Soc. 2004;52(11):1832–9.

    Article  PubMed  Google Scholar 

  88. Ensrud KE, Black DM, Palermo L, Bauer DC, Barrett-Connor E, Quandt SA, et al. Treatment with alendronate prevents fractures in women at highest risk: results from the Fracture Intervention Trial. Arch Intern Med. 1997;157(22):2617–24.

    Article  PubMed  CAS  Google Scholar 

  89. Roux C, Reginster JY, Fechtenbaum J, Kolta S, Sawicki A, Tulassay Z, et al. Vertebral fracture risk reduction with strontium ranelate in women with postmenopausal osteoporosis is independent of baseline risk factors. J Bone Miner Res. 2006;21(4):536–42.

    Article  PubMed  CAS  Google Scholar 

  90. Watts NB, Josse RG, Hamdy RC, Hughes RA, Manhart MD, Barton I, et al. Risedronate prevents new vertebral fractures in postmenopausal women at high risk. J Clin Endocrinol Metab. 2003;88(2):542–9.

    Article  PubMed  CAS  Google Scholar 

  91. McCloskey EV, Johansson H, Oden A, Vasireddy S, Kayan K, Pande K, et al. Ten-year fracture probability identifies women who will benefit from clodronate therapy–additional results from a double-blind, placebo-controlled randomised study. Osteoporos Int. 2009;20(5):811–7.

    Article  PubMed  CAS  Google Scholar 

  92. Kanis JA, Johansson H, Oden A, McCloskey EV. Bazedoxifene reduces vertebral and clinical fractures in postmenopausal women at high risk assessed with FRAX. Bone. 2009;44(6):1049–54.

    Article  PubMed  CAS  Google Scholar 

  93. *McCloskey EV, Johansson H, Oden A, Austin M, Siris E, Wang A, et al. Denosumab reduces the risk of osteoporotic fractures in postmenopausal women, particularly in those with moderate to high fracture risk as assessed with FRAX. J Bone Miner Res. 2012;27(7):1480–6. *Compelling evidence of a treatment-risk reduction interaction. Denosumab reduced fracture risk to a greater extent in those at moderate to high risk. For example, at 10% probability, denosumab decreased fracture risk by 11% (p = 0.629), whereas at 30% probability (90th percentile of study population) the reduction was 50% (p = 0.001).

    Article  PubMed  CAS  Google Scholar 

  94. Donaldson MG, Palermo L, Ensrud KE, Hochberg MC, Schousboe JT, Cummings SR. Effect of alendronate for reducing fracture by FRAX score and femoral neck bone mineral density: the Fracture Intervention Trial. J Bone Miner Res. 2012;27(8):1804–10.

    Article  PubMed  CAS  Google Scholar 

  95. Kanis JA, Johansson H, Oden A, McCloskey EV. A meta-analysis of the effect of strontium ranelate on the risk of vertebral and non-vertebral fracture in postmenopausal osteoporosis and the interaction with FRAX((R)). Osteoporos Int. 2011;22(8):2347–55.

    Article  PubMed  CAS  Google Scholar 

  96. Cummings SR, Black DM, Thompson DE, Applegate WB, Barrett-Connor E, Musliner TA, et al. Effect of alendronate on risk of fracture in women with low bone density but without vertebral fractures: results from the Fracture Intervention Trial. JAMA. 1998;280(24):2077–82.

    Article  PubMed  CAS  Google Scholar 

  97. Hochberg MC, Ross PD, Black D, Cummings SR, Genant HK, Nevitt MC, et al. Larger increases in bone mineral density during alendronate therapy are associated with a lower risk of new vertebral fractures in women with postmenopausal osteoporosis. Fracture Intervention Trial Research Group. Arthritis Rheum. 1999;42(6):1246–54.

    Article  PubMed  CAS  Google Scholar 

  98. Hochberg MC, Greenspan S, Wasnich RD, Miller P, Thompson DE, Ross PD. Changes in bone density and turnover explain the reductions in incidence of nonvertebral fractures that occur during treatment with antiresorptive agents. J Clin Endocrinol Metab. 2002;87(4):1586–92.

    Article  PubMed  CAS  Google Scholar 

  99. Jacques RM, Boonen S, Cosman F, Reid IR, Bauer DC, Black DM, et al. Relationship of changes in total hip bone mineral density to vertebral and nonvertebral fracture risk in women with postmenopausal osteoporosis treated with once-yearly zoledronic acid 5 mg: the HORIZON-Pivotal Fracture Trial (PFT). J Bone Miner Res. 2012;27(8):1627–34.

    Article  PubMed  CAS  Google Scholar 

  100. Brown JP, Albert C, Nassar BA, Adachi JD, Cole D, Davison KS, et al. Bone turnover markers in the management of postmenopausal osteoporosis. Clin Biochem. 2009;42(10-11):929–42.

    Article  PubMed  CAS  Google Scholar 

  101. Szulc P. The role of bone turnover markers in monitoring treatment in postmenopausal osteoporosis. Clin Biochem. 2012;45(12):907–19.

    Article  PubMed  CAS  Google Scholar 

  102. Silverman S. Adherence to medications for the treatment of osteoporosis. Rheum Dis Clin North Am. 2006;32(4):721–31.

    Article  PubMed  Google Scholar 

  103. Leslie WD, Lix LM, Johansson H, Oden A, McCloskey E, Kanis JA. Does osteoporosis therapy invalidate FRAX for fracture prediction? J Bone Miner Res. 2012;27(6):1243–51.

    Article  PubMed  CAS  Google Scholar 

  104. Leslie WD, Morin SN, Lix LM. Fracture prediction from repeat BMD measurements in routine clinical practice for: the Manitoba BMD Cohort. J Bone Miner Res. 2011;26 Suppl 1:S78.

    Google Scholar 

  105. The 2012 hormone therapy position statement of: The North American Menopause Society. Menopause 2012;19(3):257–71.

    Google Scholar 

  106. MacLean C, Newberry S, Maglione M, McMahon M, Ranganath V, Suttorp M, et al. Systematic review: comparative effectiveness of treatments to prevent fractures in men and women with low bone density or osteoporosis. Ann Intern Med. 2008;148(3):197–213.

    Article  PubMed  Google Scholar 

  107. **Cummings SR, Cosman F, Eastell R, Reid IR, Mehta M, Lewiecki EM. Goal-directed treatment of osteoporosis. J Bone Miner Res. 2013;28(3):433–8. **This paper proposes a bold new way of looking at the initiation and monitoring of osteoporosis treatment. The idea is to follow the example of other conditions, such as hypertension, where treatment is based on achieving a goal. Although there are many obstacles in setting treatment goals, the result could be more rational and effective use of the expanding array of treatments for osteoporosis.

    Article  PubMed  Google Scholar 

  108. Diez-Perez A, Adachi JD, Agnusdei D, Bilezikian JP, Compston JE, Cummings SR, et al. Treatment failure in osteoporosis. Osteoporos Int. 2012;23(12):2769–74.

    Article  PubMed  CAS  Google Scholar 

  109. Cummings SR, Karpf DB, Harris F, Genant HK, Ensrud K, LaCroix AZ, et al. Improvement in spine bone density and reduction in risk of vertebral fractures during treatment with antiresorptive drugs. Am J Med. 2002;112(4):281–9.

    Article  PubMed  CAS  Google Scholar 

  110. Seeman E. Is a change in bone mineral density a sensitive and specific surrogate of anti-fracture efficacy? Bone. 2007;41(3):308–17.

    Article  PubMed  CAS  Google Scholar 

  111. Khosla S. Surrogates for fracture endpoints in clinical trials. J Bone Miner Res. 2003;18(6):1146–9.

    Article  PubMed  Google Scholar 

  112. Fleming TR, DeMets DL. Surrogate end points in clinical trials: are we being misled? Ann Intern Med. 1996;125(7):605–13.

    Article  PubMed  CAS  Google Scholar 

  113. Bucher HC, Guyatt GH, Cook DJ, Holbrook A, McAlister FA. Users’ guides to the medical literature: XIX. Applying clinical trial results. A. How to use an article measuring the effect of an intervention on surrogate end points. Evidence-Based Medicine Working Group. JAMA. 1999;282(8):771–8.

    Article  PubMed  CAS  Google Scholar 

  114. McAlister FA, van DS, Padawal RS, Johnson JA, Majumdar SR. How evidence-based are the recommendations in evidence-based guidelines? PLoS Med. 2007;4(8):e250.

    Article  PubMed  PubMed Central  Google Scholar 

  115. McCloskey E, Leslie WD. Goal-directed therapy in osteoporosis. J Bone Miner Res. 2013;28(3):439–41.

    Article  PubMed  Google Scholar 

  116. **Leslie WD, Majumdar SR, Lix LM, Morin SN, Johansson H, Oden A, et al. Can change in FRAX score be used to “treat-to-target”? A population-based cohort study. J Bone Miner Res. 2014;29(5):1074–80. **This study in 11,049 previously untreated women age >50 years undergoing baseline and follow-up DXA examinations and FRAX probability calculations provided a clear answer to the question - “No”. FRAX scores increased over time and this increase was attenuated but not prevented by treatment. Few women had meaningful reductions in FRAX scores. FRAX with BMD is not responsive enough to be used as a target for goal-directed treatment.

    Article  PubMed  Google Scholar 

  117. McNabb BL, Vittinghoff E, Schwartz AV, Eastell R, Bauer DC, Ensrud K, et al. BMD changes and predictors of increased bone loss in postmenopausal women after a 5-year course of alendronate. J Bone Miner Res. 2013;28(6):1319–27.

    Article  PubMed  CAS  Google Scholar 

  118. Office of the Surgeon General (US). Bone health and osteoporosis: a report of the Surgeon General. Rockville (MD): Office of the Surgeon General (US). Available from: http://www.ncbinlmnihgov/books/NBK45513/2004

  119. Bolland MJ, Siu AT, Mason BH, Horne AM, Ames RW, Grey AB, et al. Evaluation of the FRAX and Garvan fracture risk calculators in older women. J Bone Miner Res. 2011;26(2):420–7.

    Article  PubMed  Google Scholar 

  120. Chen P, Krege JH, Adachi JD, Prior JC, Tenenhouse A, Brown JP, et al. Vertebral fracture status and the World Health Organization risk factors for predicting osteoporotic fracture risk. J Bone Miner Res. 2009;24(3):495–502.

    Article  PubMed  Google Scholar 

  121. Donaldson M, Palermo L, Schousboe JT, Ensrud K, Hochberg MC, Cummings SR. FRAX and risk of vertebral fractures: The Fracture Intervention Trial (FIT). J Bone Miner.Res. in press. 2009.

    Google Scholar 

  122. Ensrud KE, Lui LY, Taylor BC, Schousboe JT, Donaldson MG, Fink HA, et al. A comparison of prediction models for fractures in older women: is more better? Arch Intern Med. 2009;169(22):2087–94.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Sources of Support

LML is supported by a Manitoba Research Chair. SNM is Chercheur-clinicien Boursier des Fonds de la Recherche en Sante du Quebec.

Disclosures

WDL (all fees paid to facility). Speaker bureau: Amgen, Eli Lilly, and Novartis. Research grants: Amgen and Genzyme. SNM: Consultant to Amgen, Novartis, Eli Lilly, and Merck. Speaker bureau: Amgen and Novartis. Research grant: Amgen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William D. Leslie MD, MSc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Leslie, W.D., Lix, L.M., Morin, S.N. (2016). Tools for Assessing Fracture Risk and for Treatment Monitoring. In: Silverman, S., Abrahamsen, B. (eds) The Duration and Safety of Osteoporosis Treatment. Springer, Cham. https://doi.org/10.1007/978-3-319-23639-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23639-1_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23638-4

  • Online ISBN: 978-3-319-23639-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics