Skip to main content
Log in

High-temperature oxidation of pure titanium in CO2 and Ar-10%CO2 atmospheres

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The oxidation behavior of pure titanium has been investigated in the temperature range of 1000 K to 1300 K in CO2 or Ar-10%CO2. Optical microscopy, electron probe microanalyses, and X-ray measurements on the oxide scales formed during oxidation indicate that their structures are nearly independent of temperature and the corrosion atmosphere. The scales consisted of two layers, an external one and an internal one, having a rutile (TiO2) structure. The parabolic rate law was confirmed for growth of the external scale and the permeation depth of oxygen in titanium with apparent activation energies of 266 and 226 kJ/mol, respectively. The rate-determining diffusion species in the oxidation processes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Kusabiraki, T. Sugihara, and T. Ooka,Tetsu-to-Hagane 78, 327 (1992).

    Google Scholar 

  2. K. Kusabiraki, T. Sugihara, and T. Ooka,Tetsu-to-Hagane 78, 829 (1992).

    Google Scholar 

  3. F. Motte, C. Coddet, P. Sarrazin, M. Azzopardi, and J. Besson,Oxid. Met. 10, 113 (1976).

    Google Scholar 

  4. A. M. Chaze and C. Coddet,Oxid. Met. 21, 205 (1984).

    Google Scholar 

  5. A. I. Kahveci, G. Welsch, and G. E. Wasielewski, Sixth World Conf., Titanium, France, (1988), p. 1015.

  6. S. Taniguchi, T. Shibata, and S. Itch,Mater. Trans. JIM 32, 151 (1991).

    Google Scholar 

  7. A. E. Jenkins,J. Inst. Met. 82, 213 (1953-54).

    Google Scholar 

  8. P. Kofstad, K. Hauffe, and H. Kjollesdal,Acta Chem. Scand. 12, 239 (1958).

    Google Scholar 

  9. G. Bertrand, K. Jarraya, and J. M. Chaix,Oxid. Met. 21, 1 (1983).

    Google Scholar 

  10. G. Bertrand, D. Ciosmak, and J. J. Heizmann, Sixth World Conf., Titanium, France, (1988), p. 1953.

  11. C. Coddet, P. Sarrazin, and M. Besson,J. Less-Common Met. 51, 1 (1977).

    Google Scholar 

  12. P. Sarrazin, J. Motte, J. Besson, and C. Coddet, J. Less-Common Met.59, 111 (1978).

    Google Scholar 

  13. F. Nardou, P. Raynaud, and M. Billy, Sixth World Conf, Titanium, France, 1988, p. 1947.

  14. J. R. Akse and H. B. Whitehurst,J. Phys. Chem. Solids 39, 457 (1978).

    Google Scholar 

  15. G. V. Chandrashekhar and R. S. Title,J. Electrochem. Soc. 123, 392 (1976).

    Google Scholar 

  16. J. B. Wachtman and L. R. Doyle,Phys. Rev. 135, A276 (1964).

    Google Scholar 

  17. J. Yahia,Phys. Rev. 130, 1711 (1963).

    Google Scholar 

  18. P. Kofstad,J. Less-Common Met. 13, 635 (1967).

    Google Scholar 

  19. O. Kubaschewski, E. L. Evans, and C. B. Alcock,Metallurgical Thermochemistry, 4th Ed. (Pergamon Press, Oxford, 1967), p. 421.

    Google Scholar 

  20. M. Hansen and K. Anderko, eds.Constitution of Binary Alloys, 2nd Ed. (McGraw-Hill Book Company, 1958), p. 1069.

  21. K. E. Wiedemann and J. Unnam, TMS-AIME paper, No. F84-14 (1984).

  22. K. E. Wiedemann, R. N. Shenoy, and J. Unnam,Metall. Trans. A 18A, 1503 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kusabiraki, K., Kuroda, N., Motohira, I. et al. High-temperature oxidation of pure titanium in CO2 and Ar-10%CO2 atmospheres. Oxid Met 48, 289–302 (1997). https://doi.org/10.1007/BF01670504

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01670504

Key Words

Navigation