Skip to main content
Log in

Distribution of (Na++K+)ATPase and sodium channels in skeletal muscle and electroplax

  • Published:
Journal of Neurocytology

Summary

The distributions of (Na+ + K+)ATPase and sodium channels in skeletal muscle fibres and electrocytes were determined by immunofluorescent and immunoelectron microscopic techniques using antibodies against rat and eel (Na+ + K+)ATPase and the eel electric organ sodium channel. The extrajunctional sarcolemma of skeletal muscle was uniformly stained by polyclonal antibodies against (Na+ + K+)ATPase and the sodium channel. The T-tubule system of skeletal muscle was also labelled heavily for both (Na+ + K+)ATPase and the sodium channel. The terminal cisternae of the sarcoplasmic reticulum was stained for (Na+ + K+)ATPase but not sodium channels. At the motor endplate, (Na+ + K+)ATPase-like immunoreactivity was present along the plasmalemma of motor nerve terminals but not along the postsynaptic junctional sarcolemma. Paradoxically, a monoclonal antibody that binds to the α form of the catalytic subunit of (Na+ + K+)ATPase from rat hepatocytes and renal tubule cells did not label the enzyme in rat skeletal muscle. In electrocytes, (Na+ + K+)ATPase-like irnmunoreactivity was concentrated primarily along the plasmalemma and calveolae of the non-innervated face. In contrast, sodium channel-like immunoreactivity was concentrated along the plasmalemma of the innervated face except in the clefts of the postsynaptic membrane. Thus, we conclude that at endplates both the (Na+ + K+)ATPase of rat skeletal muscle and sodium channels of eel electrocytes are not concentrated in the juxtaneuronal postsynaptic membrane. We also interpret the failure of the monoclonal anti-α (Na+ + K+)ATPase antibodies to bind to the enzyme in muscle to indicate that the catalytic subunit of skeletal muscle (Na+ + K+)ATPase displays different epitopes than does the a subunit of kidney and liver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albers, R. W., Arnaiz, G. R. D. &Derobertis, E. (1965) Sodium-potassium-activated ATPase and potassium-activated p-nitrophenylphosphatase: A comparison of their subcellular localizations in rat brain.Proceedings of the National Academy of Sciences USA 53, 557–64.

    Google Scholar 

  • Almers, W., Fink,. R. &Shepherd, N. (1982) Lateral distribution of ionic channels in the cell membrane of skeletal muscle. InDisorders of the Motor Unit (edited bySchotland, D. L.), pp. 349–66. New York: John Wiley.

    Google Scholar 

  • Almers, W., Stanfield, P. R. &Stuhmer, W. (1983) Lateral distribution of sodium and potassium channels in frog skeletal muscle: measurements with a patchclamp technique.Journal of Physiology 336, 261–84.

    Google Scholar 

  • Angelides, K. J. (1986) Fluorescently labelled Na+ channels are localized and immobilized to synapse of innervated muscle fibres.Nature 321, 63–6.

    Google Scholar 

  • Ariyasu, R. G., Nichol, J. A. &Ellisman, M. H. (1985) Localization of sodium/potassium adenosine triphosphatase in multiple cell types of the murine nervous system with antibodies raised against the enzyme from kidney.Journal of Neuroscience 5, 2581–96.

    Google Scholar 

  • Baker, P. F. &Crawford, A. C. (1975) A note on the mechanism by which inhibitors of the sodium pump accelerate spontaneous release of transmitter from motor nerve terminals.Journal of Physiology 247, 209–26.

    Google Scholar 

  • Beam, K. G., Caldwell, J. H. &Campbell, D. T. (1985) Na channels in skeletal muscle concentrated near the neuromuscular junction.Nature 313, 588–90.

    Google Scholar 

  • Bennett, M. V. L. (1971) Electric organs. InFish Physiology (edited byHoar, W. S. &Randall, D. J.), pp. 347–491. New York: Academic Press.

    Google Scholar 

  • Betz, W. J., Caldwell, J. H. &Kinnamon, S. C. (1984) Increased sodium conductance in the synaptic region of rat skeletal muscle fibres.Journal of Physiology 352, 189–202.

    Google Scholar 

  • Bonting, S. L. (1970) Sodium-potassium activated adenosine triphosphatase and cation transport. InMembranes and Ion Transport (edited byBittar, E. E.), pp. 258–363. London: Wiley-Interscience.

    Google Scholar 

  • Caldwell, J. H. &Betz, W. J. (1984) Properties of an endogenous steady current in rat muscle.Journal of General Physiology 83, 157–73.

    Google Scholar 

  • Casadei, J. M., Gordon, R. D., Lampson, L. A., Schotland, D. L. &Barchi, R. L. (1984) Monoclonal antibodies against the voltage sensitive Na channel from mammalian skeletal muscle.Proceedings of the National Academy of Sciences USA 81, 6227–31.

    Google Scholar 

  • Dransfeld, H., Greeff, K., Schorn, A. &Ting, B. T. (1969) Calcium uptake in mitochondria and vesicles of heart and skeletal muscle in the presence of potassium, sodium, K-strophanthidin, and pentobarbitol.Biochemical Pharmacology 18, 1335–45.

    Google Scholar 

  • Ellisman, M. H. &Levinson, S. R. (1982) Immunocytochemical localization of sodium channel distributions in the excitable membranes ofElectrophorus electricus.Proceedings of the National Academy of Sciences USA 79, 6707–11.

    Google Scholar 

  • Engvall, E. &Perlmann, P. (1972) Enzyme-linked immunosorbent assay, ELISA III quantitation of specific antibodies by enzyme-labelled anti-immunoglobulin in antigen coated tubes.Journal of Immunology 109, 129–35.

    Google Scholar 

  • Erdmann, E., Philopp, G. &Scholz, H. (1980) Cardiac glycoside receptor, (Na+ + K+)-ATPase activity and force of contraction in rat heart.Biochemical Pharmacology 29, 3219–29.

    Google Scholar 

  • Fambrough, D. M. &Bayne, E. K. (1983) Multiple forms of (Na+ + K+)-ATPase in the chicken.Journal of Biological Chemistry 258, 3926–35.

    Google Scholar 

  • Fambrough, D. M., Wolitzky, B. A. &Pumplin, D. W. (1985) Developmental and regulatory aspects of the sodium- and potassium-ion-stimulated ATPase in avian nerve and muscle. InRegulation and Development of Membrane Transport Processes (edited byGraves, J. S.), pp. 266–82. New York: John Wiley.

    Google Scholar 

  • Farley, R. A., Ochoa, G. T. &Kudrow, A. (1986) Location of major antibody binding domains on α-subunit of dog kidney Na+ − K+-ATPase.American Journal of Physiology 250, C896-C906.

    Google Scholar 

  • Fertuck, H. C. &Salpeter, M. M. (1976) Quantitation of junctional and extrajunctional acetylcholine receptors by electron microscope autoradiography after125I-alphabungarotoxin binding at mouse neuromuscular junctions.Journal of Cell Biology 69, 144–58.

    Google Scholar 

  • Fritz, L. C., Moore, H. P. H., Raftery, M. A. &Brockes, J. P. (1983) Immunochemical studies of the voltage-sensitive sodium channel from the electroplax of the eelElectrophorus electricus Springs Harbor Symposium on Quantitative Biology 48, 181–5.

    Google Scholar 

  • Froehner, S. C. (1986) The role of the postsynaptic cytoskeleton in AChR organization.Trends in Neurosciences 9, 37–40.

    Google Scholar 

  • Gattas, C. R. &DeMeis, L. (1975) Ca2+-dependent inhibitory effects of Na+ and K+ on Ca2+ transport in sarcoplasmic reticulum.Biochimica Biophysica Acta 389, 506–15.

    Google Scholar 

  • Gorvel, J.-P., Liabeuf, A., Massey, D., Liot, D., Goridis, C. &Maroux, S. (1983) Recognition of sodium- and potassium-dependent adenosine triphosphatase in organs of the mouse by means of a monoclonal antibody.Cell and Tissue Research 234, 619–32.

    Google Scholar 

  • Haimovich, B., Bonilla, E., Casadei, J. &Barchi, R. (1984) Immunocytochemical localization of the mammalian voltage-dependent sodium channel using polyclonal antibodies against the purified protein.Journal of Neuroscience 4, 2259–68.

    Google Scholar 

  • Howland, L., Ellisman, M., Doctor, B. P. &Taylor, P. (1985) Localization of acetylcholinesterase by immunoelectron microscopy.FASEB p. 510.

  • Hubert, J. J., Schenk, D. B., Skelly, H. &Leffert, H. L. (1986) Rat hepatic (Na+ + K+)-ATPase: Alpha-subunit isolation by immunoaffinity chromatography and structural analysis by peptide mapping.Biochemistry 25, 4156–63.

    Google Scholar 

  • Jaimovich, E., Venosa, R. A., Shrager, P. &Horowicz, P. (1976) Density and distribution of tetrodotoxin receptors in normal and detubulated frog sartorius muscle.Journal of General Physiology 67, 399–416.

    Google Scholar 

  • Karlin, A. (1967) Permeability and internal concentration of ions during depolarization of the electroplax.Proceedings of the National Academy of Sciences USA 58, 1162–7.

    Google Scholar 

  • Keynes, R. D. (1961) The development of the electric organ inElectrophorus electricus (L.). InBioelectrogenesis (edited byChagas, C. &DeCarvalho, A. P.), pp. 14–19. New York: Elsevier.

    Google Scholar 

  • Lau, Y. H., Caswell, A. H., Garcia, M. &Latellier, L. (1979) Ouabain binding and coupled sodium, potassium, and chloride transport in isolated transverse tubules of skeletal muscle.Journal of General Physiology 74, 335–49.

    Google Scholar 

  • Leffert, H. L., Schenk, D. B., Hubert, J. J., Skelly, H., Schumacher, M., Ariyasu, R. G., Ellisman, M. H., Koch, K. S. &Keller, G. A. (1985) Hepatic (Na+ + K+)-ATPase: A current view of its structure, function and localization in rat liver as revealed by studies with monoclonal antibodies.Hepatology 5, 501–7.

    Google Scholar 

  • MacLennan, D. H., Brandl, C. J., Korczak, B. &Green, N. M. (1985) Amino-acid sequence of a Ca2+ + Mg2+-dependent ATPase from rabbit muscle sarcoplasmic reticulum, deduced from its complementary DNA sequence.Nature 316, 696–700.

    Google Scholar 

  • McLean, I. W. &Nakane, P. K. (1974) Periodate-lysineparaformaldehyde fixative. A new fixative for immunoelectron microscopy.Journal of Histochemistry and Cytochemistry 22, 1077–83.

    Google Scholar 

  • Nakamura, Y., Nakajima, S. &Grundfest, H. (1965) Analysis of spike electrogenesis and depolarizing K inactivation in electroplaques ofElectrophorus electricus, L.Journal of General Physiology 49, 321–49.

    Google Scholar 

  • O'Fallon, J. V., Brosemer, R. W. &Harding, J. W. (1981) The Na+,K+-ATPase: a plausible trigger for voltage-independent release of cytoplasmic neurotransmitters.Journal of Neurochemistry 36, 369–78.

    Google Scholar 

  • Preiss, R. &Banaschak, H. (1979) Na,K-ATPase in excitation-contraction coupling of vascular smooth muscle from cattle.Acta biologica et medica germanica 38, 83–96.

    Google Scholar 

  • Rubin, B. B. &Katz, A. M. (1967) Sodium and potassium effects on skeletal muscle microsomal adenosine triphosphatase and calcium uptake.Science 158, 1189–90.

    Google Scholar 

  • Sanes, J. R. &Hall, Z. W. (1979) Antibodies that bind specifically to synaptic sites on muscle fiber basal lamina.Journal of Cell Biology 38, 347–70.

    Google Scholar 

  • Schenk, D. &Leffert, H. L. (1983) Monoclonal antibodies to rat N+,K+-ATPase block enzymatic activity.Proceedings of the National Academy of Sciences USA 80, 5281–5.

    Google Scholar 

  • Shull, G. E., Schwartz, A. &Lingrel, J. B. (1985) Amino-acid sequence of the catalytic subunit of the (Na+ + K+) ATPase deduced from a complementary DNA.Nature 316, 691–5.

    Google Scholar 

  • Sternberger, L. (1979)Immunocytochemistry, 2nd edn. New York: John Wiley.

    Google Scholar 

  • Swanson, L. W., Lindstrom, J., Tzartos, S., Schmued, L. C., O'Leary, D. D. M. &Cowan, W. M. (1983) Immunohistochemical localization of monoclonal antibodies to the nicotinic acetylcholine receptor in chick midbrain.Proceedings of the National Academy of Sciences USA 80, 4532–6.

    Google Scholar 

  • Sweadner, K. J. (1979) Two molecular forms of (Na+ + K+)-stimulated ATPase in brain. Separation, and difference in affinity for strophanthidin.Journal of Biological Chemistry 254, 6060–7.

    Google Scholar 

  • Sweadner, K. J. &Gilkeson, R. C. (1985) Two isozymes of the Na,K-ATPase have distinct antigenic determinants.Journal of Biological Chemistry 260, 9016–22.

    Google Scholar 

  • Thesleff, L., Vyskocil, F. &War, M. R. (1974) The action potential in end-plate and extrajunctional regions of rat skeletal muscle.Acta physiologica scandinavica 91, 196–202.

    Google Scholar 

  • Towbin, H., Staehelin, T. &Gordon, J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications.Proceedings of the National Academy of Sciences USA 76, 4350–4.

    Google Scholar 

  • Tzartos, S. J., Rand, D. E., Einarson, B. L. &Lindstrom, J. M. (1981) Mapping of surface structures ofElectrophorus acetylcholine receptor using monoclonal antibodies.Journal of Biological Chemistry 256, 8635–45.

    Google Scholar 

  • Venosa, R. A. &Horowicz, P. (1981) Density and apparent localization of the sodium pump in frog sartorius muscle.Journal of Membrane Biology 59, 225–32.

    Google Scholar 

  • Voller, A., Bidwell, D. E. &Bartlett, A. (1979) The enzyme linked immunosorbent assay (ELISA). A guide with abstracts of microplate applications. Published by authors.

  • Vyskocil, F. (1979) The regulatory role of membrane Na+ − K+-ATPase in non-quantal release of transmitter at the neuromuscular junction.Progress in Brain Research 49, 183–9.

    Google Scholar 

  • Werman, R. (1963) Electrical inexcitability of the frog neuromuscular synapse.Journal of General Physiology 46, 517–31.

    Google Scholar 

  • Zubrzycka-Gaarn, Phillips, L. &MacLennan, D. H. (1984) Monoclonal antibodies to the Ca2+ + Mg2+-dependent ATPase of skeletal muscle sarcoplasmic reticulum — cross-reactivity with ATPase isozymes and other Ca2+-binding proteins.Progress in Clinical and Biolgical Research 168, 19–23.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ariyasu, R.G., Deerinck, T.J., Levinson, S.R. et al. Distribution of (Na++K+)ATPase and sodium channels in skeletal muscle and electroplax. J Neurocytol 16, 511–522 (1987). https://doi.org/10.1007/BF01668505

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01668505

Keywords

Navigation