Skip to main content
Log in

Injektive Moduln über Ringen linearer Differentialoperatoren

Injective modules over rings of linear differential operators

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

LetR be a division ring of characteristic 0 withn commuting (partial) differentiationsd i . DefineR[d]=R[d 1, ...,d n ] to be all polynomials ind i with coefficients inR. A typical element ofR[d] has the form Σ(r α d α(1)1 ...d α(n) n ∣α∈ℕn) withr αεR. Equality and addition are defined as in commuting polynomial rings, with multiplication induced by the relationsd i r=rd i +d i (r) forrεR and 1≤in. The power series ring

$$[[X_1 ,...,X_n ]]R = [[X]]R = \{ \Sigma (X^\alpha r_\alpha \left| {\alpha \in \mathbb{N}^n )} \right|r_\alpha \in R\} $$

is anR[d]-module,d i acting as partial differentiation ∂/∂X i on[[X]]R andR acting via the ring homomorphism

$$R \mathrel\backepsilon r \mapsto \Sigma (1/\alpha !) X^\alpha d_1^{\alpha (1)} ...d_n^{\alpha (n)} (r) \in [[X]]R$$

. Then the module[[X]]R is a big injective cogenerator in the sense of Roos [11]. This result is in a certain sense a dual of the Hilbert Basis Theorem: For each left idealL ofR[d] there exists afinite number of power seriesf 1, ...,f m such thatL is the annihilator of thef i inR[d]. For commutative rings of differential operators the minimal injective cogeneratorM is explicitly described as a submodule of[[X]]R, especially forR=ℂ we haveM=Σ(R[X] exp (ΣX i a i )|(a 1, ...,a n R n) and all these power series are convergent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Fossum, R. M.: The structure of indecomposable injective modules. Math. Scand.36, 291–312 (1975).

    Google Scholar 

  2. Gröbner, W.: Über die algebraischen Eigenschaften der Integrale von linearen Differentialgleichungen mit konstanten Koeffizienten. Mh. Math. Phys.47, 247–284 (1939).

    Google Scholar 

  3. Gröbner, W.: Algebraische Geometrie II. Mannheim: B. I.-Wissensch. Verlag. 1960.

    Google Scholar 

  4. Hauger, G.: Präradikale und Morphismenklassen. Manus. Math.2, 397–402 (1970).

    Google Scholar 

  5. Hauger, G.: Derivationsmoduln. Algebra-Bericht Nr. 32. München: Verlag Uni-Druck. 1977.

    Google Scholar 

  6. Hauger, G.: Einfache Derivationspolynomringe. Arch. Math.29, 491–496 (1977).

    Google Scholar 

  7. Hauger, G., undW. Zimmermann: Quasi-Frobenius-Moduln. Arch. Math.24, 379–386 (1973).

    Google Scholar 

  8. Kasch, F.: Moduln und Ringe. Stuttgart: Teubner. 1977.

    Google Scholar 

  9. Macaulay, F. S.: The Algebraic Theory of Modular Systems. Cambridge: Univ. Press. 1916.

    Google Scholar 

  10. Noether, E., undW. Schmeidler: Moduln in nichtkommutativen Bereichen, insbesondere aus Differential- und Differenzenausdrücken. Math. Z.8, 1–35 (1920).

    Google Scholar 

  11. Roos, J. E.: Locally Noetherian Categories and Generalized Strictly Linearly Compact Rings. Applications. Lecture Notes Math. 92. Berlin-Heidelberg-New York: Springer. 1969.

    Google Scholar 

  12. Takeuchi, M.: Tangent coalgebras and hyperalgebras I. Japan. J. Math.42, 1–413 (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hauger, G. Injektive Moduln über Ringen linearer Differentialoperatoren. Monatshefte für Mathematik 86, 189–201 (1978). https://doi.org/10.1007/BF01659719

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01659719

Navigation