Skip to main content
Log in

Module Structure of Certain Rings of Differential Operators

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

Let k be a field of characteristic zero and let k((x1,...,xn)) be the field of fractions of the ring of formal power series in n variables k[[x1,..,xn]]. We denote by \(\mathscr{E}_{n}(k)\) the k-subalgebra of Endk(k((x1,...,xn))) generated by the elements of k((x1,...,xn)) and the usual derivations 1,...,n. It is shown that every left or right ideal of \(\mathscr{E}_{n}(k)\) is generated by two elements and that stably free left or right \(\mathscr{E}_{n}(k)\)-modules of rank at least 2 are free. Similar properties are proved for the ring of k-linear differential operators with coefficients in k[[x1]].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bavula, V.V.: Generalized Weyl algebras and their representations, Algebra i Analiz 4 (1992), no. 1, 75-97; English transl. in St Petersburg Math. J. 4, pp. 71–92 (1993)

  2. Bavula, V.V.: Module structure of the tensor product of simple algebras of Krull dimension 1, Representation theory of groups, algebras and orders (Constanta, 1995). An. Stiint. Univ. Ovidius constanta Ser. Mat. 4(2), 7–21 (1996)

    MathSciNet  MATH  Google Scholar 

  3. Byun, L.H.: A note on the module structure of Weyl algebras and simple Noetherian rings. Comm. Algebra 21, 991–998 (1993)

    Article  MathSciNet  Google Scholar 

  4. Coutinho, S.C., Holland, M.P.: Module structure of rings of differential operators. Proc. Lond. Math. Soc. 57, 417–432 (1988)

    Article  MathSciNet  Google Scholar 

  5. Goodearl, K.R., Warfield , R.B.: An introduction to noncommutative Noetherian rings, 2nd edn. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  6. Hillebrand, A., Schmale, W.: Towards an effective version of a theorem of Stafford. Effective methods in rings of differential operators. J. Symb. Comput. 32, 699–716 (2001)

    Article  Google Scholar 

  7. Leykin, A.: Algorithmic proofs of two theorems of Stafford. J. Symb. Comput. 38, 1535–1550 (2004)

    Article  MathSciNet  Google Scholar 

  8. Quadrat, A., Robertz, D.: A constructive study of the module structure of rings of partial differential differential operators. Acta Appl. Math. 133, 187–234 (2014)

    Article  MathSciNet  Google Scholar 

  9. Sabbah, C.: Introduction to algebraic theory of linear systems of differential equations. Cours à lécole du CIMPA (Nice 1990) publié dans: Eléments de la théorie de systèmes différentiels. D-modules cohérents et holonomes. Travaux en Cours, vol. 45, Hermann, Paris (1993)

  10. Stafford, J.T.: Module structure of Weyl algebras. J. Lond. Math. Soc. (2) 18 (3), 429–442 (1978)

    Article  MathSciNet  Google Scholar 

  11. Swan, R.G.: Algebraic K-theory, Lecture notes in mathematics, vol. 76. Springer, Berlin (1968)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Caro-Tuesta.

Additional information

Presented by: Kenneth Goodearl

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caro-Tuesta, N., Levcovitz, D. Module Structure of Certain Rings of Differential Operators. Algebr Represent Theor 23, 1637–1657 (2020). https://doi.org/10.1007/s10468-019-09905-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-019-09905-4

Keywords

Mathematics Subject Classification (2010)

Navigation