Skip to main content
Log in

Studies on the transition of the cristal membrane from the orthodox to the aggregated configuration. III. Loss of coupling ability of adrenal cortex mitochondria in the orthodox configuration

  • Published:
Journal of bioenergetics Aims and scope Submit manuscript

Abstract

When the cristae of adrenal cortex mitochondria are stabilized in the orthodox configuration by the binding of 20–25 mμmoles/mg protein of either Ca2+ or free fatty acids (oleic acid), both the capacity for carrying out coupled reactions and the capacity for undergoing energized configurational transitions are lost. The coupled reactions studied included ATP synthesis, divalent cation translocation, monovalent cation trnaslocation, and reversed electron transfer. The coupled processes and energized configurational changes are fully operative when the cristae of adrenal cortex mitochondria are in the aggregated configuration. However, two processes that have been shown to depend on conformational changes (the anaerobic-aerobic proton ejection and energized accumulation of inorganic phosphate) still proceed when mitochondria are in the orthodox configuration. When the mitochondria are initially in the orthodox configuration, addition of divalent cations (Mg2+ or Mn2+) or albumin induces a transition of the cristae to the aggregated configuration and leads to restoration of all the coupled processes. the orthodox to aggregated transition is reversible and the modulation of this reversibility appears to be one of the key points of control in the mitochondrion and possibly of cellular functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. W. Allmann, J. Monroe, T. Wakabayashi, R. A. Harris, and D. E. Green,J. Bioenergetics,1 (1970) 87.

    Google Scholar 

  2. B. W. Harding, J. J. Bell, S. B. Oldham, and L. D. Wilson, in:Functions of the Adrenal Cortex, Vol. 2, K. W. McKerns (ed.), Appleton-Century-Crofts, New York, 1968, p. 831.

    Google Scholar 

  3. M. Satre, P. V. Vignais, and S. Idelman,FEBS Letters,5 (1969) 135.

    Google Scholar 

  4. C. H. Williams, W. J. Vail, R. A. Harris, M. Caldwell, E. Valdivia, and D. E. Green,J. Bicenergetics,1 (1970) 147.

    Google Scholar 

  5. D. E. Green, J. Asai, R. A. Harris, and J. T. Penniston,Arch. Biochem. Biophys.,125 (1968) 684.

    Google Scholar 

  6. L. Packer, K. Utsmi, and M. G. Mustafá,Arch. Biochem. Biophys.,117 (1966) 381.

    Google Scholar 

  7. C. Hackenbrock,J. Cell Biology,30 (1966) 269.

    Google Scholar 

  8. C. Hackenbrock,J. Cell Biology,37 (1968) 345.

    Google Scholar 

  9. D. W. Allmann, T. Wakabayashi, E. F. Korman, and D. E. Green,J. Bioenergetic,1 (1970) 73.

    Google Scholar 

  10. O. Lindberg and L. Ernsten,Methods Biochem. Analysis,3 (1954) 1.

    Google Scholar 

  11. G. Bondin and D. E. Green,Arch. Biochem. Biophys.,132 (1969) 509.

    Google Scholar 

  12. J. L. Purvis, R. G. Battu and F. G. Peron, inFunctions of the Adrenal Cortex, Vol. 2, K. W. McKerns (ed.), Appleton-Century-Crofts, New York, 1968, p. 107.

    Google Scholar 

  13. S. P. Colowick and F. C. Womack,J. Biol. Chem.,244 (1969) 774.

    Google Scholar 

  14. M. J. Lee, G. Vanderkooi, and R. A. Harris, in preparation.

  15. D. W. Allmann, R. A. Harris, and D. E. Green,Arch. Biochem. Biophys.,122 (1967) 766.

    Google Scholar 

  16. M. Novak,J. Lipid Research,6 (1965) 431.

    Google Scholar 

  17. R. A. Harris, J. T. Penniston, J. Asai, and D. E. Green,Proc. Nat. Acad. Sci. (U.S.),59 (1968) 830.

    Google Scholar 

  18. J. T. Penniston, R. A. Harris, J. Asai, and D. E. Green,Proc. Nat. Acad. Sci. (U.S.),59 (1968) 624.

    Google Scholar 

  19. R. A. Harris, M. A. Asbell, J. Asai, W. W. Jolly, and D. E. Green,Arch. Biochem. Biophys.,132 (1969) 545.

    Google Scholar 

  20. G. P. Brierley, E. Murer, and E. Bachmann,Arch. Biochem. Biophys.,105 (1964) 89.

    Google Scholar 

  21. G. P. Brierley,J. Biol. Chem.,242 (1967) 1115.

    Google Scholar 

  22. J. W. Greenawalt and E. Carafoli,J. Cell. Biology,29 (1966) 37.

    Google Scholar 

  23. L. Mela and B. Chance,Biochemistry,7 (1968) 4059.

    Google Scholar 

  24. R. A. Harris and C. H. Williams,Federation Proc.,29 (1969) 2255.

    Google Scholar 

  25. L. Packer and K. Utsumi,Arch. Biochem. Biophys.,131 (1969) 386.

    Google Scholar 

  26. R. A. Harvey, C. H. Williams, W. W. Jolly, J. Asai, and D. E. Green,Arch. Biochem. Biophys., in press.

  27. B. C. Pressman and H. A. Lardy,Biochem. Biophys. Acta.,21 (1956) 458.

    Google Scholar 

  28. W. C. Hülsman, W. B. Elliott, and B. C. Slater,Biochem. Biophys. Acta,39 (1960) 267.

    Google Scholar 

  29. L. Vázquez-Colón, F. D. Ziegler and W. B. Elliott,Biochemistry,5 (1966) 1134.

    Google Scholar 

  30. D. R. Helenski and C. J. Cooper,J. Biol. Chem.,235 (1960) 3573.

    Google Scholar 

  31. N. Haugaard, S. Haugaard, and N. A. Lee,Proc. Koninkl. Nederl. Akademie Van Wetenschappen Series C,72, No. 1 (1969) p. 1.

    Google Scholar 

  32. C. R. Hackenbrock and A. I. Caplan,J. Cell. Biology,42 (1969) 221.

    Google Scholar 

  33. M. J. Lee, R. A. Harris, and D. E. Green,Biochem. Biophys. Res. Communs.,36 (1969) 937.

    Google Scholar 

  34. N. E. Weber and P. V. Blair,Biochem. Biophys. Res. Communs.,36 (1969) 987.

    Google Scholar 

  35. L. A. Sordahl, Z. R. Blailock, G. H. Kraft, and A. Swartz,Arch. Biochem. Biophys.,132 (1969) 404.

    Google Scholar 

  36. C. D. Stoner and H. D. Sirak,Biochem. Biophys. Res. Communs.,35 (1969) 59.

    Google Scholar 

  37. H. A. Mintz, D. H. Yawn, B. Safer, E. Brisnick, A. G. Lichelt, Z. R. Blailock, E. R.Rabin, and A. Swartz,J. Cell. Biology,34, (1967) 513.

    Google Scholar 

  38. M. Hansen and A. L. Smith,Biochem. Biophys. Acta,81 (1964) 214.

    Google Scholar 

  39. D. W. Allmann, J. Munroe, O. Hechter, and M. Matsuba,Federation Proc.,28 (1969) 662.

    Google Scholar 

  40. R. A. Harris, D. L. Harris, and D. E. Green,Arch. Biochem. Biophys.,128 (1968) 219.

    Google Scholar 

  41. E. E. Jacobs and D. R. Sanadi,Biochem. Biophys. Acta,38 (1960) 12

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave of absence from the Department of Pathology, Nagoya University School of Medicine, Nagoya, Japan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allmann, D.W., Munroe, J., Wakabayashi, T. et al. Studies on the transition of the cristal membrane from the orthodox to the aggregated configuration. III. Loss of coupling ability of adrenal cortex mitochondria in the orthodox configuration. J Bioenerg Biomembr 1, 331–353 (1970). https://doi.org/10.1007/BF01654572

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01654572

Keywords

Navigation