Skip to main content
Log in

Determination of the effective number of light strongly interacting fermions frome + e data

  • Published:
Zeitschrift für Physik C Particles and Fields

Abstract

Both the topology of hadronic final states ine + e collisions and the evolution of event shape distributions with center of mass energy depend on the total numberN of light fermion species which couple to gluons. From an analysis ofe + e data between\(\sqrt s = 14\) GeV and\(\sqrt s = 91\) GeV I determineN=6.3±1.1. This result is compatible with both the Standard Model expectation of 5 and with the existence of a light gluino, in which caseN would be about 8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Particle Data Group, K. Hisaka et al.: Phys. Rev. D45 (1992) IX.11

    Google Scholar 

  2. I. Hinchcliffe: αs-Measurements — a review, 28th Rencontre de Moriond, Les Arcs, 1993

  3. L. Clavelli: Phys. Rev. D46 (1992) 2112

    Google Scholar 

  4. M. Jezabek, J.H. Kühn: Phys. Lett. B301 (1993) 121

    Google Scholar 

  5. J. Ellis, D.V. Nanopoulos, D.A. Ross: Phys. Lett. B305 (1993) 375; See also: I. Antoniadis, J. Ellis, D.V. Nanopoulos: Phys. Lett. B262 (1991) 109

    Google Scholar 

  6. L. Clavelli, P.W. Coulter, K. Yuan: Phys. Rev. D47 (1993) 1973

    Google Scholar 

  7. J.L. Lopez, D.V. Nanopoulos, X. Wang: CERN Preprint CERN-TH.6890/93

  8. B.A. Campbell, J. Ellis, S. Rudaz: Nucl. Phys. B198 (1982) 1

    Google Scholar 

  9. S. Dimopoulos, S. Raby, F. Wilczek: Phys. Rev. D24 (1981) 1681; M.B. Einhorn, D.R.T. Jones: Nucl. Phys. B196 (1982) 475

    Google Scholar 

  10. R.K. Ellis, D.A. Ross, A.E. Terrano: Nucl. Phys. B178 (1981) 421

    Google Scholar 

  11. S. Bethke, A. Ricker, P.M. Zerwas: Z. Phys. C49 (1991) 59

    Google Scholar 

  12. ALEPH Coll., D. Decamp et al.: Phys. Lett. B284 (1992) 151

    Google Scholar 

  13. DELPHI Coll., P. Abreu et al.: CERN Preprint CERN-PPE/93-29

  14. AMY Coll., I.H. Park et al.: Phys. Rev. Lett. 62 (1989) 1713

    Google Scholar 

  15. L3 Coll., B. Adeva et al.: Phys. Lett. B248 (1990) 227

    Google Scholar 

  16. OPAL Coll., M.Z. Akrawy et al.: Z. Phys. C49 (1991) 49

    Google Scholar 

  17. VENUS Coll., K. Abe et al.: Phys. Rev. Lett. 66 (1991) 280

    Google Scholar 

  18. S. Catani et al.: CERN Preprint CERN-TH.6640/92

  19. T. Hebbeker: Phys. Rep. 217 (1992) 69

    Google Scholar 

  20. JADE Coll., W. Bartel et al.: Z. Phys. C33 (1986) 23; JADE Coll, S. Bethke et al.: Phys. Lett. B213 (1988) 235

    Google Scholar 

  21. G. Kramer, B. Lampe: Z. Phys. C39 (1988) 101; G. Kramer, B. Lampe: Fortschr. Phys. 37 (1989) 161

    Google Scholar 

  22. Z. Kunszt, P. Nason: in: “Z Physics at LEP 1”, CERN Report CERN-89-08, Vol. I, p. 373

  23. T. Sjöstrand: Comput. Phys. Commun. 39 (1986) 347; T. Sjöstrand, M. Bengtsson: Comput. Phys. Commun. 43 (1987) 367

    Google Scholar 

  24. S. Brandt et al.: Phys. Lett. 12 (1964) 57; E. Farhi: Phys. Rev. Lett. 39 (1977) 1587

    Google Scholar 

  25. S. Catani et al.: Phys. Lett. B263 (1991) 491

    Google Scholar 

  26. ALEPH Coll., D. Decamp et al.: Phys. Lett. B284 (1992) 163

    Google Scholar 

  27. DELPHI Coll.: P. Abreu et al.: CERN preprint CERN-PPE/93-43

  28. L3 Coll., O. Adriani et al.: Phys. Lett. B284 (1992) 471

    Google Scholar 

  29. OPAL Coll., P.D. Acton et al.: CERN Preprint CERN-PPE/93-38; see also: OPAL Collab., P.D. Acton et al.: Z. Phys. C55 (1992) 1

  30. MARK II Coll., A. Peterson et al.: Phys. Rev. D37 (19881) 1

    Google Scholar 

  31. TASSO Coll., W. Braunschweig et al.: Z. Phys. C47 (1990) 187

    Google Scholar 

  32. AMY Coll., Y.K. Li et al.: Phys. Rev. D41 (1990) 2675

    Google Scholar 

  33. ALEPH Coll., D. Buskulic et al.: Z. Phys. 55 (1992) 209

    Google Scholar 

  34. L3 Coll., B. Adeva et al.: Z. Phys. C55 (1992) 39

    Google Scholar 

  35. B. Webber: private communication, 1993

  36. P. Nason: private communication, 1993

  37. F. Field: private communication, 1993

  38. W. de Boer, H. Fürstenau, DELPHI Collab.: “DELPHI Data in Comparison with QCD Models and Grand Unified Theories”, Workshop on Detector and Event Simulation in High Energy Physics, Amsterdam 1991, K. Bos, B. van Eijk (eds.)

  39. OPAL Coll., M.Z. Akrawy et al.: Z. Phys. C47 (1990) 505

    Google Scholar 

  40. G. Marchesini, B.R. Webber: Nucl. Phys. B310 (1988) 461; G. Marchesini et al.: Comput. Phys. Commun. 67 (1992) 465

    Google Scholar 

  41. D. Peterson et al.: Phys. Rev. D27 (1983) 105

    Google Scholar 

  42. D. Bardin et al.: Nucl. Phys. B351 (1991) 1; D. Bardin et al.: Z. Phys. C44 (1989) 493; D. Bardin et al.: Phys. Lett. B255 (1991) 290

    Google Scholar 

  43. T. Hebbeker: Aachen Report PITHA 91/08 (revised version)

  44. C. de Clercq: “Electroweak Results from LEP”, 28th Rencontre de Moriond, Les Arcs, 1993

  45. M. Virchaux: “Measurements of αs from Deep Inelastic Scattering”, 28th Rencontre de Moriond, Les Arcs, 1993

  46. G. Alterelli: CERN Preprint CERN-TH.6623/92

  47. S. Bethke, S. Catani: CERN Preprint CERN-TH.6484/92

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hebbeker, T. Determination of the effective number of light strongly interacting fermions frome + e data. Z. Phys. C - Particles and Fields 60, 63–69 (1993). https://doi.org/10.1007/BF01650431

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01650431

Keywords

Navigation