Skip to main content
Log in

Measurement of QCD parameters by using the single dressed gluon approximation

  • Fields, Particles, and Nuclei
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

This article is based on renormalization analysis by using the single dressed gluon (SDG) approximation. This model is used to measure the coupling constant in perturbative as well as in the nonperturbative part of the QCD theory. We employ the event shape observables 〈B T〉, 〈B W〉, 〈1 − T〉, 〈C〉, and 〈ρ〉. By fitting both Monte Carlo and the real data with SDG, we find the mean values \({\alpha _S}\left( {{M_{{Z^0}}}} \right)\) = (0.1215 ± 0.0030) GeV and ν = (1.2685 ± 0.0173) GeV in the perturbative and nonperturbative regions, respectively. Our results are consistent with those obtained from other experiments at different energies. We explain all these features in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Kluth, Rep. Prog. Phys. 69, 1771 (2006).

    Article  ADS  Google Scholar 

  2. A. Gehrmann-De Ridder, T. Gehrmann, E. W. N. Glover, and G. Heinrich, J. High Energy Phys. 12, 094 (2007).

    Article  ADS  Google Scholar 

  3. A. Gehrmann-De Ridder, T. Gehrmann, E. W. N. Glover, and G. Heinrich, Phys. Rev. Lett. 99, 132002 (2007).

    Article  ADS  Google Scholar 

  4. V. I. Zakharov, Nucl. Phys. Proc. Suppl. 74, 392 (1999).

    Article  ADS  Google Scholar 

  5. O. P. Solovtsova, Theor. Math. Phys. 134, 365 (2003).

    Article  Google Scholar 

  6. V. V. Andreev and A. A. Pankov, Phys. At. Nucl. 75, 76 (2012).

    Article  Google Scholar 

  7. R. Saleh-Moghaddam and M. E. Zomorrodian, Pramana J. Phys. 81, 775 (2013).

    Article  ADS  Google Scholar 

  8. R. Saleh-Moghaddam and M. E. Zomorrodian, Roman. Rep. Phys. 68, 138 (2016).

    Google Scholar 

  9. A. Courtoy, S. Scopetta, and V. Vento, Eur. Phys. J. A 47, 49 (2011).

    Article  ADS  Google Scholar 

  10. C. Pahl, S. Bethke, O. Biebel, S. Kluth, and J. Schieck, Eur. Phys. J. C 64, 533 (2009).

    Article  ADS  Google Scholar 

  11. R. Saleh-Moghaddam and M. E. Zomorrodian, JETP Lett. 101, 221 (2015).

    Article  ADS  Google Scholar 

  12. E. Gardi and G. Grunberg, J. High Energy Phys. 11, 016 (1999).

    Article  ADS  Google Scholar 

  13. E. Gardi, J. High Energy Phys. 04, 030 (2000).

    Article  ADS  Google Scholar 

  14. H. J. Lu and C. A. R. Sa de Melo, Phys. Lett. B 273, 260 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  15. R. K. Ellis, D. A. Ross, and A. E. Terrano, Nucl. Phys. B 178, 421 (1981).

    Article  ADS  Google Scholar 

  16. P. A. Movilla Fernandez, O. Biebel, S. Bethke, and the JADE Collab., in Proceedings of the 29th International Conference on High-Energy Physics ICHEP 98, Vancouver, Canada, 1998, JADE Paper PITHA-98-21; hepex/9807007.

    Google Scholar 

  17. T. Gehrmann, M. Jaquier, and G. Luisoni, Eur. Phys. J. C 67, 57 (2010).

    Article  ADS  Google Scholar 

  18. C. Pahl, S. Bethke, O. Biebel, S. Kluth, and J. Schieck, Eur. Phys. J. C 64, 351 (2009).

    Article  ADS  Google Scholar 

  19. A. Gehrmann-De Ridder, T. Gehrmann, E. W. N. Glover, and G. Heinrich, J. High Energy Phys. 05, 106 (2009).

    Article  ADS  Google Scholar 

  20. G. Korchemsky, Preprint LPTHE Orsay 98/44 (Labor. Phys. Theor. d’Orsay, 1998).

    Google Scholar 

  21. S. J. Brodsky, E. Gardi, G. Grunberg, and J. Rathsman, Phys. Rev. D 63, 094017 (2001).

    Article  ADS  Google Scholar 

  22. S. J. Brodsky, G. P. Lepage, and P. B. Mackenzie, Phys. Rev. D 28, 228 (1983).

    Article  ADS  Google Scholar 

  23. G. P. Lepage and P. B. Mackenzie, Phys. Rev. D 48, 2250 (1993).

    Article  ADS  Google Scholar 

  24. M. Beneke, Phys. Rep. 317, 1 (1999).

    Article  ADS  Google Scholar 

  25. M. Beneke, V. M. Braun, and L. Magnea, Nucl. Phys. B 497, 297 (1997).

    Article  ADS  Google Scholar 

  26. G. Parisi, Phys. Lett. B 74, 65 (1978).

    Article  ADS  Google Scholar 

  27. J. F. Donoghue, F. E. Low, and S. Y. Pi, Phys. Rev. D 20, 2759 (1979).

    Article  ADS  Google Scholar 

  28. Yu. L. Dokshitzer, G. Marchesini, and B. R. Webber, Nucl. Phys. B 469, 93 (1996).

    Article  ADS  Google Scholar 

  29. R. Akhoury and V. I. Zakharov, Phys. Lett. B 357, 646 (1995).

    Article  ADS  Google Scholar 

  30. T. Sjostrand et al., Comput. Phys. Commun. 135, 238 (2001).

    Article  ADS  Google Scholar 

  31. Lab TA Joy Woller University of Nebraska-Lincoln, Phys. Chem. Lab Chem. 484, 1 (1996).

    Google Scholar 

  32. B. Naroska, Phys. Rep. 86, 113 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Zomorrodian.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saleh-Moghaddam, R., Zomorrodian, M.E. Measurement of QCD parameters by using the single dressed gluon approximation. Jetp Lett. 104, 601–608 (2016). https://doi.org/10.1134/S0021364016210037

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364016210037

Navigation