Skip to main content
Log in

Paternity testing with VNTR DNA systems

I. Matching criteria and population frequencies of the VNTR systems D2S44, D5S43, D7S21, D7S22, and D12S11 in Danes

  • Original Articles
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Summary

Paternity testing using DNA polymorphism of variable numbers of tandem repeat (VNTR) regions with restriction fragment length polymorphism (RFLP) was implemented. HinfI-digested DNA was separated by electrophoresis in agarose gels and hybridized with radiolabelled probes detecting the VNTR-systems D2S44 (YNH24), D5S43 (MS8), D7S21 (MS31), D7S22 (g3), and D12S11 (MS43a). The intra gel variability of 970 duplicate investigations on the same gel of DNA from 122 individuals showed no differences exceeding 1.25 mm between the positions of the corresponding DNA fragments. The comparison of 1,624 DNA fragments from 342 mother/child pairs showed only one difference above 1.25 mm which was interpreted as a mutation. Based on these observations, we decided to consider an intra gel difference above 1.25 mm between the non-maternal DNA fragment of the child and the nearest DNA fragment of the putative father as an exclusion in paternity testing. This matching criterion was used for the comparisons of 1,197 DNA fragment differences in 247 pairs of children and putative fathers who had not been excluded by conventional marker systems. In all of these cases, the migration differences between the DNA fragments of non-excluded men and the DNA fragments of the children were less than 1.25 mm except in 6 cases (0.5%). The man/child differences in all of 227 false trios exceeded 1.25 mm in 2 or more of the 5 VNTR systems investigated. Matching criteria for inter gel comparisons in paternity testing were established. The frequency distribution of Hinfl digested DNA fragments of the 5 VNTR systems in 650 unrelated Danes is presented and the raw data is available.

Zusammenfassung

DNA-Polymorphismen mit einer variablen Anzahl von tandemähnlichen Wiederholungseinheiten (VNTR's), speziell der Typus der Restriktionsfragmentlängenpolymorphismen, wurden in die Vaterschaftsanalyse eingeführt. Hinfl-verdaute DNA wurde elektrophoretisch in Agarose-Gelen aufgetrennt und mit radioaktiv markierten Sonden hybridisiert, welche die VNTR-Systeme D2S44 (YNH24), D5S43 (MS8), D7S21 (MS31), D7S22 (G3) und D12S11 (MS43a) detektieren. Die sog. Intra-Gelvariation von 970 Doppeluntersuchungen auf demselben Gel von DNA von 122 Personen zeigte keine Unterschiede, welche größer waren als 1,25 mm — bezogen auf die Positionen der korrespondierenden DNA-Fragmente. Der Vergleich von 1.624 DNA-Fragmenten von 342 Mutter—Kind—Paaren zeigte lediglich einen Unterschied, welcher größer als 1,25 mm war und daher als eine Mutation interpretiert wurde. Hierauf basierend entschlossen wir uns, eine Intra-Geldifferenz größer als 1,25 mm zwischen dem nicht-mütterlichen DNA-Fragment des Kindes und dem nächsten DNA-Fragment des Putativ-Vaters als einen Ausschluß in der Vaterschaftsanalyse zu bewerten. Dieses Match-Kriterium wurde benutzt für die Vergleiche von 1.197 DNA-Fragmentdifferenzen bei 247 Paaren von Kindern und Putativ-Vätern, bei welchen in konventionellen Systemen kein Ausschluß zu beobachten war. In all diesen Fällen waren die Wanderungsunterschiede zwischen DNA-Fragmenten der nicht-ausgeschlossenen Männner und den Fragmenten der Kinder geringer als 1,25 mm mit der Ausnahmen von 6 Fällen (0,5%). Die Mann—Kind—Differenzen in allen der 227 falschen Terzette überschritten 1,25 mm in zwei oder mehr der 5 VNTR-Systeme, welche untersucht wurden. Match-Kriterien für die Inter-Gel-Vergleiche bei Vaterschaftsuntersuchungen wurden etabliert. Die Frequenz-Verteilung von HinfIverdauten DNA-Fragmenten der 5 VNTR-Systeme bei 650 unverwandten Dänen wird gezeigt und die Rohdaten sind verfügbar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baird M, Balazs I, Giusti A, Miyazaki L, Nicholas L, Wexler K, Kanter E, Glassberg J, Allen F, Rubinstein P, Sussman L (1986) Allele frequency distribution of two highly polymorphic DNA sequences in three ethnic groups and its application to the determination of paternity. Am J Hum Genet 39:489–501

    Google Scholar 

  • Balazs I, Baird M, Clyne M, Meade E (1989) Human population genetic studies of five hypervariable DNA loci. Am J Hum Genet 44:182–90

    Google Scholar 

  • Elder JK, Southern JM (1987) Computer-aided analysis of one dimensional restriction fragment gels. In: Bishop MJ, Rawlings CJ (eds) Nucleic acid and protein sequence analysis — a practical approach. IRL, Oxford, pp 165–172

    Google Scholar 

  • Eriksen B, Bertelsen A, Svensmark O (1992) Statistical analysis of the measurement errors in the determination of fragment length in DNARFLP analysis. Forensic Sci Int 52:181–191

    Google Scholar 

  • Gill P, Sullivan K, Werrett DJ (1990) The analysis of hypervariable DNA profiles: problems associated with the objective determination of the probability of a match. Hum Genet 85:75–79

    Google Scholar 

  • Gill P, Woodroffe S, Bär W, Brinkmann B, Caracedo A, Eriksen B, Jones S, Kloosterman AD, Ludes B, Mevâg B, Pascali VL, Schmitter H, Schneider PM, Thomsen JA (1992) A report of an international collaborative experiment to demonstrate the uniformity obtainable using DNA profiling technique. Forensic Sci Int 53:29–43

    Google Scholar 

  • Gjertson DW, Mickey MR, Hopfield J, Takenouchi T, Terasaki PI (1988) Calculation of probability of paternity using DNA sequences. Am J Hum Genet 43:860–869

    Google Scholar 

  • Gürtler H (1956) Principles of blood-group statistical evaluation of paternity cases at the University Institute of Forensic Medicine, Copenhagen. Acta Med Leg Soc 9:83–93

    Google Scholar 

  • Hansen HE (1989) Forensic aspects of HLA serology. Thesis. Alma, Copenhagen.

    Google Scholar 

  • Hansen HE, Morling N (1992) Paternity testing with VNTR DNA systems. II. Evaluation of 271 cases of disputed paternity with the VNTR systems D2S44, D5S43, D7S21, D7S22, and D12S11. Int J Leg Med 105:197–202

    Google Scholar 

  • Henke L, Cleef S, Zakrezewska M, Henke J (1991) Population genetic data determined for five different single locus minisatellite probes. In: Burke T, Dolf G, Jeffreys AJ, Wolff R (eds) DNA fingerprinting approaches and applications. Birkhauser Verlag, Basel, pp 144–153

    Google Scholar 

  • Henningsen K (1983) Paternity case analysis. In: Walker RH (ed) Inclusion probabilities in parentage testing. American Association of Blood Banks, Arlington, pp 501–503

    Google Scholar 

  • Jeffreys AJ, Wilson V, Thein nL (1985) Hypervariable ‘minisatellite’ regions in human DNA. Nature 314:67–73

    Google Scholar 

  • Jeffreys AJ, MacLeod A, Tamaki K, Neil DL, Monckton DG (1991) Minisatellite repeat coding as a digital approach to DNA typing. Nature 354:204–209

    Google Scholar 

  • Morris JW, Sanda AI, Glassberg J (1989) Biostatistical evaluation of evidence from continuous allele frequency distribution deoxyribonucleic acid (DNA) probes in reference to disputed paternity and identity. J Forensic Sci 34:1311–1317

    Google Scholar 

  • Nakamura Y, Leppert M, O'Connell P, Wolff R, Holm T, Culver M, Martin C, Fujimoto E, Hofe M, Kumlin E, White R (1987) Variable number of tandem repeat (VNTR) markers for human gene mapping. Science 235:1616–1622

    Google Scholar 

  • Schneider PM, Fimmers R, Woodroffe S, Werrett DJ, Bär W, Brinkmann B, Eriksen B, Jones S, Kloosterman AD, Mevåg B, Pascali VL, Rittner C, Schmitter H, Thomson JA, Gill P (1991) Report of a European collaborative exercise comparing DNA typing results using a single locus VNTR probe. Forensic Sci Int 49:1–15

    Google Scholar 

  • Smith JC, Anwar R, Riley J, Jenner D, Markham A, Jeffreys AJ (1990) Highly polymorphic minisatellite sequences: allele frequencies and mutation rates for five locus-specific probes in a Caucasian population. J Forensic Sci Soc 30:19–32

    Google Scholar 

  • Wong Z, Wilson V, Jeffreys AJ, Them SL (1986) Cloning a selected segment from a human DNA ‘fingerprint’: isolation of an extremely polymorphic minisatellite. Nucleic Acids Res 14:4605–4616

    Google Scholar 

  • Wong Z, Wilson V, Patel I, Povey S, Jeffreys NJ (1987) Characterization of a panel of highly variable minisatellites cloned from human DNA. Ann Hum Genet 51:269–88

    Google Scholar 

  • Wyman AR, White R (1980) A highly polymorphic locus in human DNA. Proc Natl Acad Sci USA 77:6754–6758

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morling, N., Hansen, H.E. Paternity testing with VNTR DNA systems. Int J Leg Med 105, 189–196 (1993). https://doi.org/10.1007/BF01642792

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01642792

Key words

Schlüsselwörter

Navigation