Skip to main content
Log in

The coagulation of Ca3Al2(OH)12 in aqueous electrolyte solutions

  • Original Contributions
  • Colloid Science
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Summary

Coagulation rate measurements of Ca3Al2(OH)12 in different aqueous electrolyte solutions (NaOH, NaNO3, Ca(OH)2) show that, at concentrations lower than 0.1 M NaNO3 and 0.3 M NaOH respectively, the stability increases with increasing ionic strength. This fact cannot be explained as either primary or secondary coagulation according to the DLVO theory. However, polymeric ions such as poly-aluminate ions, present in the liquid phase can cause the observed coagulation behaviour at these concentrations. At NaNO3 concentrations higher than 0.1 M NaNO3 the coagulation behaviour can be explained as primary coagulation according to the DLVO theory assumingψσ =ζ withA 1(2) = 0.03 X 10−20J. Assuming a distance between the plane with average potentialψgs andζ of 0.3 to 0.4 nm,A 1(2) =0.28 -0.30 x 10−20J depending on the conditions between these two layers.

Zusammenfassung

Koagulationgeschwindigkeitsmessungen an Ca3 Al2(OH)12-Suspensionen zeigen, daß in wässerigen Elektrolytlösungen (NaOH, NaNO3, Ca(OH)2) bei Konzentrationen niedriger als 0.1 M NaNO3 bzw. 0.3 M NaOH die Stabilität größer wird, wenn die Elektrolytkonzentration zunimmt. Weder primäre noch sekundäre Koagulation nach der DLVO-Theorie kann diesen Effekt erklären. Die Anwesenheit von polymeren Ionen (z. B. Polyaluminationen) in der Lösung kann das beobachtete Koagulationsverhalten bei diesen Konzentrationen aber deuten. Bei NaNO3-Konzentrationen größer als 0.1 M kann das Koagulationsverhalten erklärt werden als primäre Koagulation nach der DLVO-Theorie mit der Annahme, daßψσ=ζ und A1(2)=0.03 X 10−20 J. Nimmt man an, daß der Abstand zwischen den Flächen mit durchschnittlichen Potentialenψσ undζ etwa 0.3–0.4 nm beträgt, so wird A1(2)=0.28–0.30 x 10−20 J, abhängig vom Zustand zwischen diesen Flächen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Traettenberg, A., P. J. Sereda, Cem. Concr. Res.6, 461 (1976).

    Google Scholar 

  2. Overbeek, J. Th. G., In: Colloid Science (ed.H. R. Kruyt), (Amsterdam 1952).

  3. Spierings, G. A. C. M., H. N. Stein, Colloid & Polymer Sci.256, 369 (1978).

    Google Scholar 

  4. Smith, M. E., M. W. Lisse, J. Phys. Chem.40, 399 (1936).

    Google Scholar 

  5. Wiersema, P. H., A. L. Loeb, J. Th. G. Overbeek, J. Colloid Interface Sci.22, 278 (1966).

    Google Scholar 

  6. Yeatts, L. B., W. L. Marshall, J. Phys. Chem.71, 2641 (1967).

    Google Scholar 

  7. Reerink, H., J. Th. G. Overbeek, Disc. Faraday Soc.18, 74 (1954).

    Google Scholar 

  8. Ottewill, R. H., J. N. Shaw, Disc. Faraday Soc.42, 154 (1966).

    Google Scholar 

  9. Wiese, G. R., T. W. Healy, J. Colloid Interface Sci.51, 427 (1975).

    Google Scholar 

  10. Hamaker, H. C., Physica4, 1058 (1937).

    Google Scholar 

  11. Bell, G. M., S. Levine, L. N. McCartney, J. Colloid Interface Sci.33, 335 (1970).

    Google Scholar 

  12. Lyklema, J., J. N. de Wit, J. Electroanal. Chem.65, 443 (1975).

    Google Scholar 

  13. Verwey, E. J. W., J. Th. G. Overbeek, Theory of the stability of lyophobic colloids (Amsterdam 1948).

  14. McGrown, D. N. L., G. D. Parfitt, J. Phys. Chem.71, 449 (1967).

    Google Scholar 

  15. Muller, H., Kolloidchem. Beihefte,27, 223 (1928).

    Google Scholar 

  16. Hogg, R., K. C. Yang, J. Colloid Interface Sci.56, 573 (1976).

    Google Scholar 

  17. Richmond, P., A. L. Smith, J. Chem. Soc. Faraday II,71, 468 (1975).

    Google Scholar 

  18. Lyklema, J., J. Th. G. Overbeek, J. Colloid Sci.16, 501 (1961).

    Google Scholar 

  19. International Critical Tables, Vol. V (New York 1929).

  20. Plumb, R. C., J. W. Swaine Jr., J. Phys. Chem.68, 2057 (1964).

    Google Scholar 

  21. Copley, D. B., S. Y. Tyree, J. Colloid Interface Sci.55, 558 (1976).

    Google Scholar 

  22. Glastonbury, J. R., Chem. Ind., p. 121 (1969).

  23. Jones, F. E., M. H. Roberts, Building Res., Curr. Pap. Ser. 1, june 1963.

  24. Stein, H. N., Special Report 90 Highway Research Board, p. 368 (Washington 1968).

  25. Healy, T. W., V. R. Jelett, J. Colloid Interface Sci.24, 41 (1967).

    Google Scholar 

  26. Hesselink, F. Th., A. Vrij, J. Th. G. Overbeek, J. Phys. Chem.75, 2094 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 8 figures and 1 table

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spierings, G.A.C.M., Stein, H.N. The coagulation of Ca3Al2(OH)12 in aqueous electrolyte solutions. Colloid & Polymer Sci 257, 171–177 (1979). https://doi.org/10.1007/BF01638144

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01638144

Keywords

Navigation