Skip to main content
Log in

Insights into the Dissolution Behavior of CaO and Mass Transfer of Oxide Ions in Molten CaCl2

  • Topical Collection: 2023 Metallurgical Processes Workshop for Young Scholars
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

This study focuses on understanding the behavior of oxide ions (O2–) in molten CaCl2, which is important for applications in molten salt electrolysis. The dissolution mechanism of solid CaO and mass transfer characteristics of O2– in molten CaCl2 were investigated through comprehensive chemical analysis. The results revealed that the incongruently melting compound in the CaCl2–CaO system is Ca4OCl6 (CaO·3CaCl2), with a peritectic point observed at 19 mol pct of CaO and 1104 K. The previously reported compounds Ca3OCl4 (CaO·2CaCl2) and Ca5OCl8 (CaO·4CaCl2) were never detected, while only Ca4OCl6 (CaO·3CaCl2) was observed under air-tight conditions. The dissolution behavior of solid CaO in molten CaCl2 is highly temperature dependent, with a critical threshold identified at 1104 K. Below this temperature, CaO reacts with CaCl2 to form Ca4OCl6, which subsequently dissociates into simple ions (Ca2+, Cl, and O2–). Above 1104 K, CaO directly dissociates to produce O2–. Although temperature influences the formation and dissociation of Ca4OCl6, it has minimal impact on the dissociation of CaO and the mass transfer of O2– in the melt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Boghosian, A. Godø, H. Mediaas, W. Ravlo, and T. Østvold: Acta Chem. Scand., 1991, vol. 45, pp. 145–57. https://doi.org/10.3891/acta.chem.scand.45-0145.

    Article  CAS  Google Scholar 

  2. D.J. Fray: Can. Metall. Q., 2002, vol. 41, pp. 433–39. https://doi.org/10.1179/cmq.2002.41.4.433.

    Article  CAS  Google Scholar 

  3. B.V. Neumann, C. Kröger, and H. Jüttner: Ztschr. Elektrochem., 1935, vol. 41, pp. 725–36. https://doi.org/10.1002/bbpc.19350411005.

    Article  CAS  Google Scholar 

  4. W.D. Threadgill: J. Electrochem. Soc., 1965, vol. 112, pp. 632–33. https://doi.org/10.1149/1.2423626.

    Article  CAS  Google Scholar 

  5. D.A. Wenz, I. Johnson, and R.D. Wolson: J. Chem. Eng. Data, 1969, vol. 14, pp. 250–52. https://doi.org/10.1021/je60041a027.

    Article  CAS  Google Scholar 

  6. G.S. Perry and L.G. Macdonald: J. Nucl. Mater., 1985, vol. 130, pp. 234–41. https://doi.org/10.1016/0022-3115(85)90312-5.

    Article  CAS  Google Scholar 

  7. J. Claquesin, M. Gibilaro, L. Massot, O. Lemoine, G. Bourges, and P. Chamelot: Mater. Sci. Appl., 2021, vol. 12, pp. 139–51. https://doi.org/10.4236/msa.2021.124009.

    Article  CAS  Google Scholar 

  8. K.S. Mohandas: Miner. Process. Extr. Metall., 2013, vol. 122, pp. 195–12. https://doi.org/10.1179/0371955313Z.00000000069.

    Article  CAS  Google Scholar 

  9. S. Shaw and R. Watson: ECS Trans., 2009, vol. 16, pp. 301–308. https://doi.org/10.1149/1.3159334.

    Article  CAS  Google Scholar 

  10. S. Wang, F. Zhang, X. Liu, and L. Zhang: Thermochim. Acta, 2008, vol. 470, pp. 105–107. https://doi.org/10.1016/j.tca.2008.02.007.

    Article  CAS  Google Scholar 

  11. V.L. Cherginets and T.P. Rebrova: Thermochim. Acta, 2017, vol. 654, pp. 51–53. https://doi.org/10.1016/j.tca.2017.05.001.

    Article  CAS  Google Scholar 

  12. N. Sano, F. Tsukihashi, and A. Tagaya: ISIJ Int., 1991, vol. 31, pp. 1345–347. https://doi.org/10.2355/isijinternational.31.1345.

    Article  CAS  Google Scholar 

  13. Y. Tago, Y. Endo, K. Morita, F. Tsukihashi, and N. Sano: ISIJ Int., 1995, vol. 35, pp. 127–31. https://doi.org/10.2355/ISIJINTERNATIONAL.35.127.

    Article  CAS  Google Scholar 

  14. B. Mishra, P. D. Ferro and D. L. Olson: Proceedings of the 9th International Symposium on Molten Salts, 1994, vol. 13, pp. 694-704. https://doi.org/10.1149/199413.0697PV

  15. L. Dan, N. Liu, Z. Li, and X. Li: Rare Metal. Mater. Eng., 2021, vol. 50, pp. 2410–14.

    Google Scholar 

  16. H.J. Meyer, G. Meyer, and M. Simon: Z. Anorg. Allg. Chem., 1991, vol. 56, pp. 89–92. https://doi.org/10.1002/ZAAC.19915960112.

    Article  Google Scholar 

  17. O. Reckeweg and F.J. Disalvo: Zeitschrift für Naturforschung B, 2008, vol. 63, pp. 519–24. https://doi.org/10.1515/znb-2008-0507.

    Article  CAS  Google Scholar 

  18. T. Schmid and P. Dariz: J. Raman Spectrosc., 2015, vol. 46, pp. 141–46. https://doi.org/10.1002/JRS.4622.

    Article  CAS  Google Scholar 

  19. H.-G. Unruh, D. Mühlenberg, and C. Hahn: Z. Phys. B, 1992, vol. 86, pp. 133–38. https://doi.org/10.1007/BF01323557.

    Article  CAS  Google Scholar 

  20. M.S. Seehra: J. Solid State Chem., 1986, vol. 63, pp. 344–45. https://doi.org/10.1016/0022-4596(86)90187-8.

    Article  CAS  Google Scholar 

  21. E.M. Dubina, L. Korat, L. Black, J. Strupi-Suput, and J. Plank: Spectrochim. Acta, Part A, 2013, vol. 111, pp. 299–303. https://doi.org/10.1016/j.saa.2013.04.033.

    Article  CAS  Google Scholar 

  22. X. Li, Z. Pang, W. Tang, X. Zhang, J. Li, G. Li, Q. Xu, X. Zou, and X. Lu: Metall. Mater. Trans. B, 2022, vol. 53B, pp. 2800–13. https://doi.org/10.1007/s11663-022-02565-8.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors appreciate Dr. Zhong Chen, Ms. Yuan Cheng of the Instrumentation and Service Center for Molecular Sciences at Westlake University for the assistance in the Raman measurement, and Dr. Yin Nie of the Instrumentation and Service Center for Physical Sciences at Westlake University for the assistance in the sample characterization. This work was partially supported by Research Centre for Industries of the Future (RCIF) at Westlake University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Yang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1289 kb)

Supplementary file2 (MP4 10014 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, C., Yang, X. Insights into the Dissolution Behavior of CaO and Mass Transfer of Oxide Ions in Molten CaCl2. Metall Mater Trans B (2024). https://doi.org/10.1007/s11663-024-03123-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11663-024-03123-0

Navigation