Skip to main content
Log in

Disclinations in transversely isotropic media II. Angular and straight disclinations

  • Published:
Czechoslovak Journal of Physics B Aims and scope

Conclusions

  1. 1.

    Introduction of the angular disclinations makes it possible to construct stress fields of a disclination network analytically in anisotropic solids.

  2. 2.

    In the case of a highly anisotropic medium (c 33 ≫ c ij ) the disclination dipole and quadrupole are characterized by the strong dependence of the elastic energy on the dipole arm orientation with respect to the basal plane and on the quadrupole shape correspondingly.

Thus, the investigation carried out in the present study clearly demonstrates the necessity of anisotropic theory of disclinations development. The generalisation of the theory for the case of disclination with arbitrary Frank vector orientation can be done on the basis of rectangular twist disclination loop elastic fields. We intend to solve this problem in the nearest future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lichatchev V. A., Rybin V. V.: Fiz. Tverd. Tela18 (1976) 163.

    Google Scholar 

  2. Vladimirov V. I., Zukovskij I. M.: Fiz. Tverd. Tela17 (1975) 1196.

    Google Scholar 

  3. Zukovskij I. M.: Fiz. Tverd. Tela17 (1975) 969.

    Google Scholar 

  4. Yoffe E. H.: Phil. Mag.5 (1960) 161.

    Google Scholar 

  5. Hirth J. P., Wells R. G.: J. Appl. Phys.41 (1970) 5250.

    Google Scholar 

  6. Lejcek L.: Czech. J. Phys. B28 (1978) 434.

    Google Scholar 

  7. Das E. S. P., Marcinkowski M. J., Armstrong R. W., de Wit R.: Phil. Mag.27 (1973) 369.

    Google Scholar 

  8. Pertsev N. A., Vladimirov V. I.: Czech. J. Phys.B 33 (1983) 28.

    Google Scholar 

  9. de Wit R.: J. Res. Nat. Bur. Standards US77 A (1973) 49.

    Google Scholar 

  10. de Wit R.: J. Res. Nat. Bur. Standards US77 A (1973) 607.

    Google Scholar 

  11. Steeds J. W.: Anisotropic elasticity theory of dislocations. Clarendon Press, Oxford, 1973.

    Google Scholar 

  12. Zukovskij I. M., Rybin V. V.: Fiz. Tverd. Tela18 (1976) 2291.

    Google Scholar 

  13. Vladimirov V. I., Pertsev N. A., Romanov A. E.: Rectangular wedge disclination loops and their interactions with other crystal defects. Preprint PTI N683, Leningrad, 1980.

  14. Odajima A., Maeda T.: J. Polym. Sci. (C) N15 (1966) 55.

    Google Scholar 

  15. Robertson R. E.: J. Polym. Sci. (A2)7 (1969) 1315.

    Google Scholar 

  16. Seto T., Tajima Y.: Japan. J. Appl. Phys.5 (1966) 534.

    Google Scholar 

  17. Attenburrow G. E., Bassett D. C.: J. Mater. Sci.14 (1979) 2679.

    Google Scholar 

  18. Klassen-Neckludova M. V.: Mechanical twinning of crystals. USSR Academy of Sciences, Moscow, 1960.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The author owes sincere thanks to Professor V. I. Vladimirov for his interest and valuable suggestions in the course of the work and also for reading the manuscript. Thanks are also due to Dr. A. E. Romanov for helpful discussions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pertsev, N.A. Disclinations in transversely isotropic media II. Angular and straight disclinations. Czech J Phys 33, 199–207 (1983). https://doi.org/10.1007/BF01605499

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01605499

Keywords

Navigation