Skip to main content
Log in

Adsorption of Freon 113

I. Comparison of the adsorption of krypton and 1,1,2 trichloro-1,2,2 trifluoroethane on graphitized carbon black

  • Colloid Science
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Summary

The adsorption of Freon 113 (1,1,2 trichloro-1,2,2 trifluoroethane) at 260–310 K on Graphon was measured and compared with the adsorption of krypton at 104–120 K on the same surface. The adsorption isotherms, and resulting thermodynamics, for both adsorbates were similar over the entire pressure range studied. Surface area analysis of the data suggests that the Freon molecule occupies approximately 2.5 times the area of the krypton molecule on Graphon. Further, the Freon molecules are hindered in their rotational freedom on this surface at these temperatures, with their dipole axes aligning perpendicular to the surface of the Graphon.

Zusammenfassung

Es wurde die Adsorption von Freon 113 (1,1,2 Trichlor-1,2,2 Trifluoräthan) an Graphon bei 260–310 °K gemessen und mit der Adsorption von Krypton bei 104–120 °K auf der gleichen Grenzfläche gemessen. Die Adsorptionsisothermen und die daraus resultierenden thermodynamischen Daten waren für beide Adsorbate im gesamten untersuchten Druckbereich ähnlich. Eine Analyse der Daten legt nahe, daß ein Freonmolekiil annähernd das 2,5fache der Fläche eines Kryptonmoleküls auf Graphon beansprucht. Es ist anzunehmen, daß die Freonmoleküle auf dieser Oberfläche und bei diesen Temperaturen in ihren Rotationsfreiheitsgraden gehindert sind und ihre Dipolachsen senkrecht zur Oberfläche liegen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iwasaki, M., Bull. Chem. Soc. Jap.32, 205 (1959).

    Google Scholar 

  2. Higgins, K. R., J. Lielmezs, J. Chem. Eng. Data10, 178 (1965).

    Google Scholar 

  3. Martinet, J., Fr. Atom. Ener. Comm. Rep. No. 888 (1958).

  4. Boebm, H. P., E. Diebl, W. Heck, Rev. Giu. Cavutchouc. Plastiques41, 464 (1964).

    Google Scholar 

  5. Beebe, R. A., J. Biscoe, W. R. Smith, C. B. Vendell, J. Amer. Chem. Soc.69, 95 (1947).

    Google Scholar 

  6. Joyner, L. G., P. H. Emmett, J. Amer. Chem. Soc.70, 2353 (1948).

    Google Scholar 

  7. Barrer, R. M., Proc. Roy. Soc., Ser. A.161, 476 (1937).

    Google Scholar 

  8. Pierce, C., B. Ewing, J. Phys. Chem.71, 3408 (1967).

    Google Scholar 

  9. Pierce, C., B. Ewing, J. Phys. Chem.68, 2562 (1964).

    Google Scholar 

  10. Polley, M. H., W. D. Schaeffer, W. R. Smith, J. Phys. Chem.57, 469 (1953).

    Google Scholar 

  11. Graham, D., J. Phys. Chem.61, 1310 (1957).

    Google Scholar 

  12. Healey, F. H., Y. F. Yu, J. J. Cbessick, J. Phys. Chem.59, 399 (1955).

    Google Scholar 

  13. Amberg, C. H., W. B. Spencer, R. A. Beebe, Can. J. Chem.33, 305 (1955).

    Google Scholar 

  14. Kington, G. L., R. A. Beebe, M. H. Polley, R. H. Smith, J. Amer. Chem. Soc.72, 1775 (1950).

    Google Scholar 

  15. Ross, J. W., R. J. Good, J. Phys. Chem.60, 1167 (1956).

    Google Scholar 

  16. Istrikyan, A. A., A. V. Kiselev, J. Phys. Chem.66, 210 (1962).

    Google Scholar 

  17. Drzal, L. T., F. A. Putnam, T. Fort, Jr., Rev. Sci. Instrum.45, 1331 (1974).

    Google Scholar 

  18. Guareca, R. A., H. P. Richardson, J. L. Gordon, J. D. Walker, J. L. Cooper, U. S. Dept. of Commerce, Bureau of Mines, Information Cir. 8317 (1967).

  19. Ballant, R. W., Ind. Eng. Chem., Process Des. Develop.47, 113 (1968).

    Google Scholar 

  20. Kittel, C., Introduction to Solid State Physics, 3rd ed., p. 385 (New York 1968).

  21. Brunauer, S., P. H. Emmett, E. Teller, J. Amer. Chem. Soc.60, 309 (1938).

    Google Scholar 

  22. Ross, S. J., J. P. Olivier, On Physical Adsorption (New York 1964).

  23. Kiselev, A. V., A. G. Bezus, Russ. J. Phys. Chem.40, 311 (1966).

    Google Scholar 

  24. Bangbam, D. H., Trans. Faraday Soc.33, 805 (1937).

    Google Scholar 

  25. Innes, W. B., H. H. Rowley, J. Phys. Chem.45, 158 (1941).

    Google Scholar 

  26. Mickley, H. S., T. K. Sherwood, C. E. Reed, Applied Mathematics in Chemical Engineering, 2nd Ed. (New York 1957).

  27. Graham, D., J. Phys. Chem.61, 1310 (1957).

    Google Scholar 

  28. Putnam, F. A., T. Fort, Jr., J. Phys. Chem.79, 459 (1975).

    Google Scholar 

  29. MacIver, D. S., P. H. Emmett, J. Phys. Chem.60, 824 (1956).

    Google Scholar 

  30. Hill, T., J. Phys. Chem.14, 441 (1946).

    Google Scholar 

  31. Fowler, R. H., Proc. Cambridge Phil. Soc.32, 744 (1936).

    Google Scholar 

  32. Hill, T. L., P. H. Emmett, L. G. Joyner, J. Amer. Chem. Soc.73, 5102 (1951).

    Google Scholar 

  33. Gregg, S. J., J. Chem. Soc. 696 (1942).

  34. Adamson, A. W., Physical Chemistry of Surfaces, 2nd Ed., p. 142 (New York 1967).

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 9 figures and 2 tables

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drzal, L.T., Fort, T. Adsorption of Freon 113. Colloid & Polymer Sci 254, 795–802 (1976). https://doi.org/10.1007/BF01602778

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01602778

Keywords

Navigation