Skip to main content
Log in

High-temperature adsorption layers based on fluoridated polyimide and diatomite carrier

  • Physical Chemistry of Separation Processes. Chromatography
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

A way of preparing separation layers by the pyrolysis of fluorinated polyimide obtained from 2,4,6-trimethyl-m-phenylenediamine (2,4,6-TMmPDA) and 2,2-bis(3′,4′-dicarboxyphenyl)hexafluoropropane (6FDA) applied onto a diatomite carrier is described. Thermogravimetry, elemental analysis, low-temperature nitrogen adsorption, high-resolution electron microscopy, and gas chromatography are used to study changes in the texture and chromatographic characteristics of these layers. It is found that changes in the structure and the effectivity of separation characteristic of the layers depend on the temperature of pyrolysis, which ranges from 250 to 1100°C. It is established that a layer of separation is formed at 250–350°C, and the order of elution of hydrocarbons is similar to their chromatographic behavior on such stationary phases as OV-101. Layers of amorphous carbon formed on the surfaces of individual particles on a diatomite surface at 500–700°C. These layers ensure highly stable and selective separation of permanent gases and hydrocarbons when they are present together.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. G. Sedigh, L. Xu, T. T. Tsotsis, and M. Sahimi, Ind. Eng. Chem. Res. 38, 3367 (1999).

    Article  CAS  Google Scholar 

  2. A. F. Ismail and L. I. B. David, J. Membr. Sci. 193, 1 (2001).

    Article  CAS  Google Scholar 

  3. T. A. Centeno and A. B. Fuertes, J. Membr. Sci. 160, 201 (1999).

    Article  CAS  Google Scholar 

  4. Q. De, W. J. Koros, and S. J. Miller, Ind. Eng. Chem. Res. 41, 367 (2002).

    Article  Google Scholar 

  5. J. E. Koresh and A. Soffer, Sep. Sci. Technol. 22, 973 (1987).

    Article  CAS  Google Scholar 

  6. C. H. Liang, G. Y. Sha, and S. C. Guo, Carbon 37, 1391 (1999).

    Article  CAS  Google Scholar 

  7. M. Heuchel and D. Hofmann, Desalination 144, 67 (2002).

    Article  CAS  Google Scholar 

  8. T. Takeichi, Y. Eguchi, Y. Kaburagi, et al., Carbon 37, 569 (1999).

    Article  CAS  Google Scholar 

  9. E. Barbosa-Coutinho, V. M. M. Salim, and S. P. Borges, Carbon 41, 1707 (2003).

    Article  CAS  Google Scholar 

  10. M. Pixton and D. Paul, Polymer 36, 2745 (1995).

    Article  CAS  Google Scholar 

  11. A. Singh, K. Ghosal, B. Freeman, et al., Polymer 40, 5715 (1999).

    Article  CAS  Google Scholar 

  12. C. Nagel, K. Günther-Schade, D. Fritsch, et al., Macromolecules 35, 2071 (2002).

    Article  CAS  Google Scholar 

  13. M. Al-Masri, H. Kricheldorf, and D. Fritsch, Macromolecules 32, 7853 (1999).

    Article  CAS  Google Scholar 

  14. S. B. Claudia and J. K. William, J. Membr. Sci. 170, 205 (2000).

    Article  Google Scholar 

  15. M. Niwa, H. Kawakami, T. Kanamori, et al., Macromolecules 34, 9039 (2001).

    Article  CAS  Google Scholar 

  16. H. Shu-Hsien, H. Chien-Chieh, L. Kueir-Rarn, et al., Eur. Polym. J. 42, 140 (2006).

    Article  Google Scholar 

  17. P. Budd and N. McKeown, Polym. Chem. 1, 63 (2001).

    Article  Google Scholar 

  18. Ohtaa Naoto, Nishi Yoko, Morishita Takahiro, et al., Carbon 46, 1350 (2008).

    Article  Google Scholar 

  19. P. S. Tin, Y. X. Xiao, and T.-Sh. Chung, Separ. Purif. Rev., 285 (2006).

    Google Scholar 

  20. T. A. Vaganova, S. Z. Kusov, V. I. Rodionov, et al., J. Fluorine Chem. 129, 253 (2008).

    Article  CAS  Google Scholar 

  21. E. Yu. Yakovleva, I. K. Shundrina, and T. A. Vaganova, J. Anal. Chem. 64, 1044 (2009).

    Google Scholar 

  22. E. Yu. Yakovleva, I. K. Shundrina, E. Yu. Gerasimov, and T. A. Vaganova, Russ. J. Phys. Chem. A 88, 521 (2014).

    Article  CAS  Google Scholar 

  23. G. Lazar, K. Zellama, et al., J. Optoelectron. Adv. Mater. 7, 647 (2005).

    CAS  Google Scholar 

  24. E. P. Barrett et al., J. Am. Chem. Soc. 73, 373 (1951).

    Article  CAS  Google Scholar 

  25. K. I. Sakodynskii and L. I. Panina, Polymeric Sorbents for Molecular Chromatography (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  26. Catalog, Sigma-Aldrich, Carboxen1000 in Analytical Application.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Yakovleva.

Additional information

Original Russian Text © E.Yu. Yakovleva, I.K. Shundrina, E.Yu. Gerasimov, 2017, published in Zhurnal Fizicheskoi Khimii, 2017, Vol. 91, No. 9, pp. 1579–1587.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakovleva, E.Y., Shundrina, I.K. & Gerasimov, E.Y. High-temperature adsorption layers based on fluoridated polyimide and diatomite carrier. Russ. J. Phys. Chem. 91, 1797–1804 (2017). https://doi.org/10.1134/S0036024417090321

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024417090321

Keywords

Navigation