Skip to main content
Log in

Inverse power law potentials in rectangular configurations

  • Original Papers
  • Published:
Zeitschrift für angewandte Mathematik und Physik ZAMP Aims and scope Submit manuscript

Summary

Calculations based on a (distance)−ε intermolecular potential (ε>3) enable study of the effects on adsorption of the geometry of the solid. This paper gives the closed form solution for the adsorptive potential about a homogeneous solid rectangular corner; and, through systematic superposition, closed form solutions for the following configurations also: the rectangular corner of a cavity; laminae and rectangular cracks occupying a quarter plane; semi-infinite rectangular prisms and prismatic cavities; rectangular parallelepipeds and brick-shaped cavities. These various results are developed in detail for the cases ε=6 and ε=4. The paradox that potentials for ε>3 seem to be obtainable more readily than Newtonian potentials (ε=1) is explained by the existence only for ε>3 of simple fundamental solutions for infinite homogeneous solid configurations.

Zusammenfassung

Berechnungen, denen ein intermolekulares Potential der Form (Abstand)−ε (ε>3) zugrunde gelegt ist, ermöglichen eine Untersuchung von Effekten der Adsorption auf die Geometrie des Festkörpers. Die vorliegende Arbeit gibt die Lösung in geschlossener Form für das Adsorptionspotential um eine feste, homogene, rechtwinklige Ecke an. Ausserdem werden durch systematische Superposition Lösungen in geschlossener Form für die folgenden Konfigurationen angegeben: die rechtwinklige Innenecke einer Mulde; viertelunendliche, ebene Platten und rechteckige Spalten; halbunendliche, reckteckige Prismen und prismatische Mulden; Quader und quaderförmige Höhlen. Diese Ergebnisse sind ausführlich dargestellt für die Fälle ε=4. Das Paradoxon. dass Potentiale mit ε>3 scheinbar leichter zugänglich sind als das Gravitationspotential (ε=1), wird dadurch erklärt, dass nur für ε>3 einfache Grundlösungen für unendliche, homogene Festköperkonfigurationen existieren.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. H. Everett,The Effect of Adsorption on the Interaction between Solid Particles, Pure and Appl. Chem.48, 419–425 (1976).

    Google Scholar 

  2. J. R. Philip,Unitary Approach to Capillary Condensation and Adsorption, J. Chem. Phys.66, 5069–5075 (1977).

    Google Scholar 

  3. W. A. Steele andG. D. Halsey,The Interaction of Gas Molecules with Capillary and Crystal Lattice Surfaces, J. Phys. Chem.59, 57–65 (1955).

    Google Scholar 

  4. A. Sheludko,Thin Liquid Films, Adv. Coll. Interface Sci.1, 391–464 (1967).

    Google Scholar 

  5. J. Clifford,Properties of Water in Capillaries and Thin Films, inWater, a Comprehensive Treatise (ed. F. Franks), Vol. 5, Plenum, New York (1975), pp. 74–132

    Google Scholar 

  6. J. R. Philip,Adsorption and Geometry: the Boundary Layer Approximation, J. Chem. Phys.67, 1732–1741 (1977).

    Google Scholar 

  7. J. R. Philip,Inverse Power Law Potentials about Polygonal Prisms and in Polygonal Cavities, J. Aust. Math. Soc. B. (in press).

  8. J. Waldvogel,The Newtonian Potential of a Homogeneous Cube, Z. angew. Math. Phys.27, 867–871 (1976).

    Google Scholar 

  9. W. D. MacMillan,The Theory of the Potential, Dover, New York (1958), pp. 72–80.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Philip, J.R. Inverse power law potentials in rectangular configurations. Journal of Applied Mathematics and Physics (ZAMP) 29, 631–643 (1978). https://doi.org/10.1007/BF01601489

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01601489

Keywords

Navigation