Skip to main content
Log in

A two-fluid model of turbulence for a thermal plasma jet

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

In this paper, a turbulent argon plasma jet issuing into a stagnant argon environment at 1 ATM is .studied by applying a two-fluid turbulence model, in order to advance our understanding of thermal plasma jets. The mathematical model has some similarities to the models of two-phase flows, so that the turbulent plasma jet is treated as a two-phase mixture. The governing equations include the transport equations far mass, momentum, and energy far two different fluid parcels (in-moving parcels and out-moving parcels). Auxiliary relations that govern the physical phenomena of the interfluid mass, momentum, and energy exchange are preserved together with a description of the mechanisms that control the growth or diminution of the fragment size. The results are presented with conditional- and unconditional-averaged forms and compared with experimental results from enthalpy-probe measurements. A well-known nondimensional farm (a Gaussian error function) can represent the radial distributions of the measured- and predicted-unconditional mean axial velocity and temperature in consecutive sections (20–45 mm from the nozzle exit). Further insight into the behavior of turbulent plasma jets can be gained by looking at the conditional fluid properties. The results show that this model can predict phenomena that escape more conventional models, e.g., the uninixing phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C a ,C b :

constants in the fragment-size equation

C f :

interfluid friction constant

C m :

interfluid mass-transfer constant

C ν :

shear-source constant

C μ :

turbulent-viscosity constant

c p :

specific heat at constant pressure of fluidi

d :

nozzle diameter

f ii :

interfluid friction

h :

mean specific enthalpy

h i :

mean specific enthalpy of fluidi

I :

arc current

k :

turbulent kinetic energy

l :

effective length scale

l i :

fragment size of fluidi

l p :

Prandtl mixing length

m ii :

interfluid mass-transfer rate

Pri :

turbulent Prandtl numberp pressure

O :

net power input to the plasma jet

r :

spatial coordinate (normally radial)

r i :

volume fraction of fluidi

S R i :

radiation loss of fluidi (+)

S ν :

shear-induced source of momentum

T :

mean temperature ath, whereh=(r 1 ρ 1 h1 +r2ρ2h2)/ρ

T i :

mean temperature of fluidi

t :

time coordinate

U :

average ofU 1 andU 2 : U = (r1ρ1U1 + r2ρ2U2)/ρ

U i :

velocity component of fluidi in thex direction

V i :

velocity component of fluidi in ther directionV volt arc voltage

V t :

velocity vector of fluidi

x :

spatial coordinate (normally axial)

δ Θ :

half-width of the thermal jet, the value ofr for which Θ=Θν/2

δ U :

half-width of the momentum jet, the value ofr for whichU=U ν /2

ε :

dissipation rate of turbulent kinetic energy

Γ h i :

energy-dlffuslon-exchange coefficient of fluidi

γ :

intermittent factor

η :

thermal efficiency of the torch

η Θ :

dimensionless coordinate,r/δ Θ

η ν :

dimension less coordinate,r/δ ν

κ l :

thermal conductivity of fluidi

μ l :

effective dynamic viscosity of fluidi

μ l i :

laminar dynamic viscosity of fluidi

μ l :

turbulent dynamic viscosity

Θ:

excess mean temperature (T−T a )

ρ :

average density:ρ=r 1 ρ1 + r2ρ2

ρ i :

density of fluidi

a :

ambient environment

c :

property corresponding to centerline

i :

fluidi

References

  1. E. Pfender,Surf. Coatings Technol. 34, 1 (1988).

    Google Scholar 

  2. R. Spores and E. Pfender,Surf. Coatings Technol. 37. 251 (1989).

    Google Scholar 

  3. J. R. Fincke and C. G. Pentecost, “Laminar-to-turbulent transition and entrainment in thermal plasma jets,” inHeat Transfer in Thermal Plasma Processing, HTD Vol. 161, ASME (1991), p. 101.

  4. B. E. Launder and D. B. Spalding,Lectures in Mathematical Models of Turbulence, Academic Press, London (1972).

    Google Scholar 

  5. W. C. Reynolds and T. Cebeci, “Calculation of turbulent flows,” inTurbulence, Topics in Applied Physics, 12, P. Bradshaw, ed., Springer-Verlag, Berlin, Heidelberg, New York (1976), p. 193.

    Google Scholar 

  6. W. Rodi, “Turbulence models for environmental problems,” inPrediction Methods for Turbulent Flows, W. Kollmann, ed., Hemisphere Publ. Co., Washington (1980), p. 260.

    Google Scholar 

  7. F. H. Halow and P. I. Nakayama,Phys. Fluids 10, 2323 (1967).

    Google Scholar 

  8. D. B. Spalding, “Two-fluid models of turbulence,” CFDU Report CFD/85/4, CFDU, Imperial College, London (1985).

    Google Scholar 

  9. N. Fueyo. “Two-fluid models of turbulence for axisymmetrical jets and sprays,” Ph.D. Thesis, CFDU, Imperial College, London (1989).

    Google Scholar 

  10. D. B. Spalding, “A turbulence model for buoyant and combusting flows,” CFDU Report CFD/86/4, CFDU, Imperial College, London (1986).

    Google Scholar 

  11. O. Reynolds,Proc. Manchester Lib. Philos. Soc. 8 (1874) (cited by Spalding, 1986).

  12. L. Prandtl,ZAMM,5, 136 (1925) (cited by Spalding, 1986).

    Google Scholar 

  13. E. A. Spiegel,Phys. Fluids 15, 1372 (1972).

    Google Scholar 

  14. P. A. Libby,J. Fluid Mech. 68, 273 (1975).

    Google Scholar 

  15. P. A. Libby,Phys. Fluids 19, 494 (1976).

    Google Scholar 

  16. C. Dopazo,J. Fluid Mech. 81, 433 (1977).

    Google Scholar 

  17. C. Dopazo and E. E. O'Brien, “Intermittency in free turbulent shear flows,” inTurbulent Shear Flow I, F. Durst, B. E. Launder, F. W. Schmidt, and J. H. Whitelaw, eds., Springer-Verlag, Berlin, Heidelberg, New York (1979), p. 6.

    Google Scholar 

  18. W. Kollmann,AIAA J. 22, 486 (1984).

    Google Scholar 

  19. S. B. Pope,AIAA J. 22, 896 (1984).

    Google Scholar 

  20. S. B. Pope,Prog. Energy Combust. Sci. 11 (2), 119 (1985).

    Google Scholar 

  21. D. B. Spalding,Int. J. Physicochem Hydrodynam.4, 323 (1983).

    Google Scholar 

  22. M. R. Malin, “Turbulence modeling for flow and heat transfer injets, wakes, and plumes,” Ph.D. Thesis, Imperial College, London (1986).

    Google Scholar 

  23. W. L. T. Chen, “Enthalpy probe and spectrometric measurements for Miller SG-100 subsonic plasma jet.” High-Temperature Laboratory, Department of Mechanical Engineering, University of Minnesota, Minneapolis, March (1990).

    Google Scholar 

  24. A. A. Townsend,J. Fluid Mech. 26, 689 (1966).

    Google Scholar 

  25. J. O. Illegbusi and D. B. Spalding,Int. J. Physiochem. Hydrodynam.9, 161 (1987).

    Google Scholar 

  26. M. Van Dyke,An Album of Fluid Motion, The Parabolic Press, Stanford, California (1988).

    Google Scholar 

  27. P. C. Huang, “Modeling of DC plasma spraying systems,” Annual Report for Engineering Research Center for Plasma-Aided Manufacturing, ERC for Plasma-Aided Manufacturing, University of Minnesota, Minneapolis, April (1990).

    Google Scholar 

  28. P. C. Huang, “A turbulent swirling are model and a two-fluid turbulent model for thermal plasma sprays,” Ph.D. Thesis, Department of Mechanical Engineering, University of Minnesota, Minneapolis (1993).

    Google Scholar 

  29. CHAM Development Team,The Phoenics Reference Manual, CRAM/TR200, CHAM, London (1991).

  30. S. V. Patankar and D. B. Spalding,Int. J. Heat Mass Transfer 15, 1787 (1972).

    Google Scholar 

  31. D. B. Spalding, “Numerical computation of multi-phase fluid flow and heat transfer,” inRecent Advances in Numerical Methods in Fluids, C. Taylor and K. Morgan, eds., Halsted Press, New York (1980), p. 139.

    Google Scholar 

  32. E. Pfender, “General computer codes for the calculations of thermodynamic and transport properties,” High-Temperature Laboratory, Department of Mechanical Engineering, University of Minnesota, Minneapolis (1992).

    Google Scholar 

  33. D. L. Evans and R. S. Tankin,Phys. Fluids 10, 1137 (1967).

    Google Scholar 

  34. P. C. Huang, W. L. T. Chen, J. V. Heberlein and E. Pfender, “Similarity Characteristics of turbulent argon plasma jets,”Proceedings of the 10th International Symposium on Plasma Chemistry, Ute Ehlemann, H. G. Lergon, and K. Wicsemann, eds., Vol. 1, Bochum, Germany, August 4–9, 1991, pp. I.1-9.

  35. W. J. Hill, Jr., R. C. Jenkins, and B. L. Gilbert,AIAA J. 14, 1513 (1976).

    Google Scholar 

  36. R. W. Schefer, V. Hartmann, and R. W. Dibble,AIAA J. 25, 1318 (1987).

    Google Scholar 

  37. W. J. A. Dahm and P. E. Dimotakis,AIAA J. 25, 1216 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, P.C., Hebeylein, J. & Pfender, E. A two-fluid model of turbulence for a thermal plasma jet. Plasma Chem Plasma Process 15, 25–46 (1995). https://doi.org/10.1007/BF01596680

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01596680

Key words

Navigation