Skip to main content
Log in

Description of nonradiative multiphonon transitions in the static coupling scheme

I. Foundations

  • Published:
Czechoslovak Journal of Physics B Aims and scope

Abstract

Nonradiative multiphonon transitions generated by the interaction of the electronic system with quantized normal oscillation modes are described quantum-theoretically on the basis of the static coupling scheme which is an essential, physically plausible alternative model to the adiabatic coupling scheme predominantly used in earlier papers. Putting emphasis on the mathematical correctness of the calculations we obtain a generally valid expression for nonradiative multiphonon transition rates which is based on the concept of temperature-averaged overlap factors. In the case of a single phonon energy this result is reduced to very compact expressions not given in original papers published so far. For non-vanishing phonon dispersion a simple standard formula is given which is suited for approximative numerical calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stasiw O., Elektronen- und Ionenprozesse in Ionenkristallen. Springer, Berlin—Göttingen—Heidelberg, 1959.

    Google Scholar 

  2. Stumpf H., Quantentheorie der Ionenkristalle. Springer, Berlin—Göttingen—Heidelberg, 1961.

    Google Scholar 

  3. Bonch-Bruevich V. L., Landsberg E. G., phys. stat. sol.29 (1968), 9.

    Google Scholar 

  4. Landsberg P. T., phys. stat. sol.41 (1970), 457.

    Google Scholar 

  5. Haug A., Theoretische Festkörperphysik II, Deuticke, Wien, 1970.

    Google Scholar 

  6. Haug A., FestkörperproblemeXII (1972), 411.

    Google Scholar 

  7. Schlag E. W., Schneider E., Fischer S. F., Ann. Rev. Phys. Chem.22 (1971), 465.

    Google Scholar 

  8. Kovarskiy V. A., Chaykovskiy I. A., Sinyavskiy E. P., FTT6 (1964), 2131.

    Google Scholar 

  9. Huang K., Rhys A., Proc. Roy. Soc.A 204 (1950), 406.

    Google Scholar 

  10. Perlin Yu. E., UFN80 (1963), 553.

    Google Scholar 

  11. Helmis G., Ann. Phys. (Lpz.)19 (1956), 41.

    Google Scholar 

  12. Markham J. J., Phys. Rev. (2),103 (1956), 588

    Google Scholar 

  13. Haug A., Z. Phys.175 (1963), 166.

    Google Scholar 

  14. Howgate D. W., Phys. Rev. (2)177 (1969), 1358.

    Google Scholar 

  15. Pässler R., Diss., TH Karl-Marx-Stadt, 1972.

  16. Meyer H. J. G., HalbleiterproblemeIII (1956), 230.

    Google Scholar 

  17. Kovarskiy V. A., FTT4 (1962), 1636.

    Google Scholar 

  18. Kovarskiy V. A., Sinyavskiy E. P., FTT4 (1962), 3202.

    Google Scholar 

  19. Kubo R., Toyozawa Y., Progr. theor. Phys.13 (1955), 160.

    Google Scholar 

  20. Fain W. M., Chanin J. I., Quantenelektronik. Teubner, Leipzig, 1969.

    Google Scholar 

  21. Stumpf H., Phys. kondens. Materie13 (1971), 101.

    Google Scholar 

  22. Krivoglaz M. A., ZhETF25 (1953), 191.

    Google Scholar 

  23. Watson G. N., A Treatise on the Theory of Bessel-Functions, Cambridge, 1962.

  24. Lax M., J. Chem. Phys.20 (1952), 1752.

    Google Scholar 

  25. Trlifaj M., Czech. J. Phys.5 (1955), 133.

    Google Scholar 

  26. Dexter D. L., Solid State Phys.6 (1958), 353.

    Google Scholar 

  27. Krivoglaz M. A., Pekar S. I., Trudy Inst. Fiz. AN SSSR,4 (1953), 37.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper continues the studies carried out for the thesis of the author which had been prepared under the kind guidance of Prof. Dr. M.Trlifaj, Prague, and Prof. Dr. R.Lenk, Karl-Marx-Stadt, to whom I would like to express my sincere thanks for stimulating discussions and valuable criticism.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pässler, R. Description of nonradiative multiphonon transitions in the static coupling scheme. Czech J Phys 24, 322–339 (1974). https://doi.org/10.1007/BF01596354

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01596354

Keywords

Navigation