Skip to main content
Log in

Über den Einfluss der Oberflächeneigenschaften von Halbleitern auf ihre Eiskeimfähigkeit

  • Originalarbeiten
  • Published:
Zeitschrift für angewandte Mathematik und Physik ZAMP Aims and scope Submit manuscript

Abstract

The factors controlling the ice nucleation efficiency are studied in this paper on suitably chosen model substances, in particular on silicon. It is found that the critical supersaturation for the growth of ice on a (111)-plane of GaAs is 25% at −25°C; this quantity as well as the number of growing ice crystals (cm−2) were found to be independent of the dislocation density. The critical supersaturation for the growth of ice on the (111)-plane of Si is strongly dependent on the electrical conductivity of the crystals, but independent of the sign of the majority charge carriers. Epitaxial growth is observed on the hexagonal substrate GaSe only, but not on the cubic GaAs and Si.

On the basis of the classical nucleation theory the free energy of adsorption of H2O on GaSe ΔG ads =0,48 eV and the specific interfacial free energy σ SL =23,2 erg · cm−2 are evaluated. This indicates that the outermost layer of the ice embryo is in a liquid-like state.

Water adsorption isotherms were measured gravimetrically down to −20°C and were found to be of type II (BET, [33]). The amount of adsorbed water and the isosteric heat of adsorption at a given relative pressure depend on the doping of the sample.

From this it is concluded that low conductivity material had more adsorption sites than high conductivity material, but these fewer sites on the high conductivity samples were more active in collecting water molecules. The larger water clusters are formed on high conductivity samples in agreement with the higher nucleation efficiency observed in mixing cloud chamber experiments.

The electrical conductivity and the sign of the thermoelectric effect of a thin silicon on sapphire film have been measured as a function of oxygen and water vapor pressures. It is found that band bending towards ann-type surface occurred during water chemisorption on Si.

This indicates that chemisorbed water molecules act as donor surface states. The charge exchanged between adsorbate and adsorbent is larger on high conductivity samples on account of their higher initial surface potential.

Chemisorption sites on Si are proportional to the doping concentration and they produce relatively large water clusters. Hence doping results in a higher nucleation efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literaturverzeichnis

  1. T. Bergeron, Proc. 5th Ass. UGGI, Lissabon2, 136 (1935).

    Google Scholar 

  2. D. Shaw undB. J. Mason, Phil. Mag.46, 249 (1955).

    Google Scholar 

  3. G. W. Bryant, J. Hallett undB. J. Mason, J. phys. Chem. Sol.12, 189 (1960).

    Google Scholar 

  4. T. H. Geballe, in:Semiconductors, N. B. Hannay, ed. (Reinhold Publ. Co., New York 1959), p. 329.

    Google Scholar 

  5. W. K. Burton, N. Cabrera undF. C. Frank, Phil. Trans.243, 300 (1951).

    Google Scholar 

  6. U. Zimmerli undA. Steinemann, in:Crystal Growth (Pergamon Press, London 1967), p. 81.

    Google Scholar 

  7. M. S. Abrahams, J. appl. Phys.35, 3626 (1964).

    Google Scholar 

  8. D. W. Pashley, Adv. in Physics14, 328 (1965).

    Google Scholar 

  9. M. Volmer undA. Weber, Z. phys. Ch,119, 277 (1925).

    Google Scholar 

  10. R. Becker undW. Doering, Ann. Phys.24, 719 (1935).

    Google Scholar 

  11. G. M. Pound, M. T. Simnad undL. Yang, J. chem. Phys.22, 1215 (1954).

    Google Scholar 

  12. D. Turnbull, Sol. State Phys.3, 225 (1956).

    Google Scholar 

  13. H. Poppa, J. appl. Phys.38, 3883 (1967).

    Google Scholar 

  14. J. Frenkel,Kinetic Theory of Liquids (Oxford Univ. Press, London 1946).

    Google Scholar 

  15. B. K. Chakraverty undG. M. Pound, Acta Met.12, 851 (1964).

    Google Scholar 

  16. J. P. Hirth undG. M. Pound,Condensation and Evaporation (Pergamon Press, London 1963).

    Google Scholar 

  17. N. H. Fletcher,The Physics of Rainclouds (Cambridge Univ. Press, 1962).

  18. N. H. Fletcher, Phil. Mag.7, 225 (1962).

    Google Scholar 

  19. G. Srinivasan, J. J. Chessick undA. C. Zettlemoyer, J. phys. Chem.66, 1819 (1962).

    Google Scholar 

  20. V. Pravdic, E. McCafferty undA. C. Zettlemoyer, Surface Sci.7, 380 (1967).

    Google Scholar 

  21. A. Many, Y. Grover undN. B. Goldstein,Semiconductor Surfaces (North-Holland Publ. Co., 1965), p. 408.

  22. S. J. Birstein, J. Meteorol.12, 324 (1955).

    Google Scholar 

  23. L. V. Coulter undG. A. Candela, Z. Elektroch.56, 449 (1952).

    Google Scholar 

  24. P. G. Hall undF. C. Tompkins, Trans. Faraday Soc.58, 1734 (1962).

    Google Scholar 

  25. A. C. Zettlemoyer, N. Tcheurekdjian, J. J. Chessik, Nature192, 653 (1961).

    Google Scholar 

  26. N. Tcheurekdjian, A. C. Zettlemoyer, J. J. Chessick, J. phys. Chem.68, 773 (1964).

    Google Scholar 

  27. M. L. Corrin, S. P. Moulik undB. Cooley, J. Atm. Sc.24, 530 (1967).

    Google Scholar 

  28. S. Brunauer, P. H. Emmett undE. Teller, J. Amer. chem. Soc.60, 309 (1938).

    Google Scholar 

  29. A. C. Zettlemoyer, N. Tcheurekdjian undCh. L. Hosler, Z. angew. Math. Phys.14, 496 (1963).

    Google Scholar 

  30. O. Jaentsch, J. phys. Chem. Sol.26, 1233 (1965).

    Google Scholar 

  31. H. P. Boehm, Adv. Catalysis16, 225 (1966).

    Google Scholar 

  32. R. A. W. Haul, Angew. Chem.68, 238 (1956).

    Google Scholar 

  33. S. Brunauer,Physical Adsorption of Gases (Oxford Univ. Press, 1945).

  34. D. M. Young undA. D. Crowell,Physical Adsorption of Gases (Butterworths, London 1962), p. 82.

    Google Scholar 

  35. B. M. W. Trapnell,Chemisorption (Butterworths, London 1955), p. 144.

    Google Scholar 

  36. D. E. Meyer undN. Hackerman, J. phys. Chem.70, 2077 (1966).

    Google Scholar 

  37. T. L. Hill, P. H. Emmett undL. G. Joyner, J. Amer. chem. Soc.75, 5102 (1951).

    Google Scholar 

  38. J. T. Law, J. Phys. Chem. Sol.4, 91 (1958);M. Green, K. H. Maxwell, J. phys. Chem. Sol.13, 145 (1960).

    Google Scholar 

  39. J. T. Law, J. phys. Chem.59, 67 (1955).

    Google Scholar 

  40. F. M. Wanlass undH. Eyring, Adv. in Chemistry33, 140 (1961).

    Google Scholar 

  41. D. H. Everett, Trans. Faraday Soc.46, 942 (1950).

    Google Scholar 

  42. E. A. Moelwyk-Hughes,Physical Chemistry, 2nd ed., p. 453.

  43. C. Kemball, Adv. Catalysis2, 233 (1950).

    Google Scholar 

  44. W. H. Brattain undJ. Bardeen, Bell System Tech. J.32, 1 (1953).

    Google Scholar 

  45. P. Aigrain undC. Dugas, Z. Elektrochem.56, 363 (1952).

    Google Scholar 

  46. K. Hauffe undH. J. Engell, Z. Elektrochem.56, 366 (1952).

    Google Scholar 

  47. P. B. Weisz, J. chem. Phys.20, 1483 (1952);21, 1531 (1953).

    Google Scholar 

  48. F. G. Allen undG. W. Gobeli, Phys. Rev.127, 141, 150 (1962).

    Google Scholar 

  49. H. M. Manasevit undW. I. Simpson, J. appl. Phys.35, 1349 (1964).

    Google Scholar 

  50. R. H. Kingston undS. F. Neustadter, J. appl. Phys.26, 718 (1955).

    Google Scholar 

  51. H. Statz, G. A. de Mars, L. Davis Jr. undA. Adams, in:Semiconductor Surface Physics (Univ. of Pennsylvania Press, 1957), p. 139.

  52. R. H. Kingston, J. appl. Phys.27, 101 (1956).

    Google Scholar 

  53. J. T. Law, J. phys. Chem.61, 1200 (1957).

    Google Scholar 

  54. J. T. Law, J. appl. Phys.32, 600 (1961).

    Google Scholar 

  55. Ref. [21]A. Many, Y. Grover undN. B. Goldstein,Semiconductor Surfaces (North-Holland Publ. Co., 1965), p. 376.

  56. M. Henzler, Phys. Stat. Sol.19, 833 (1967).

    Google Scholar 

  57. U. Katz, Z. angew. Math. Phys.13, 333 (1962).

    Google Scholar 

  58. S. Amelinckx undW. Dekeyser, Solid St. Phys.8, 325 (1959).

    Google Scholar 

  59. J. Bardeen, Phys. Rev.71, 717 (1947).

    Google Scholar 

  60. C. A. T. Salama, T. W. Tucker undL. Young, Solid-St. Electron.10, 339 (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Federer, B. Über den Einfluss der Oberflächeneigenschaften von Halbleitern auf ihre Eiskeimfähigkeit. Journal of Applied Mathematics and Physics (ZAMP) 19, 637–665 (1968). https://doi.org/10.1007/BF01594971

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01594971

Navigation