Skip to main content
Log in

A theory of the positive column constriction in the noble gas discharges at medium pressures

  • Published:
Czechoslovak Journal of Physics B Aims and scope

Abstract

A theory explaining the positive column constriction in terms of a thermal effect is presented. As a consequence of the heating the neutral gas becomes more rarified near the tube axis and a locally increased molecular ion production ensues. If this is balanced by the dissociative (volume) recombination a constriction results at higher currents and pressures. The density profiles and other physical quantities are computed and compared with the available experimental data. All computations are performed for a non-Maxwellian plasma with the electron Coulomb interaction neglected. In contrast to the theories based on an ionization mechanism the thermal theory predicts also a constriction of the density profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rutscher A., Zusammenfassende Vorträge einer Arbeitstagung in Eisenach, 22.–27. September 1968 (Ed. G. Wallis), p. 9.

  2. Pfau S., Rutscher A., Beitr. Plasmaphys.8 (1968), 73.

    Google Scholar 

  3. Kagan Yu. M., Liagushczenko R. I., JTP34 (1964), 1873.

    Google Scholar 

  4. Wojaczek K., Beitr. Plasmaphys.6 (1966), 221.

    Google Scholar 

  5. Ulianov K. N., JTP53 (1973), 570.

    Google Scholar 

  6. Pfau S., Rutscher A., Beitr. Plasmaphys.8 (1968), 85.

    Google Scholar 

  7. Hornbeck J. A., Molnar J. P., Phys. Rev.84 (1951), 621.

    Google Scholar 

  8. Pfau S., Rutscher A., Wojaczek K., Beitr. Plasmaphys.9 (1969), 333.

    Google Scholar 

  9. Venzke D., Hayess E., Wojaczek K., Beitr. Plasmaphys.6 (1966), 365.

    Google Scholar 

  10. Venzke D., Thesis, E.M.A.-Universität Greifswald, 1973.

  11. Frommhold L., Biondi M. A., Mehr F. J., Phys. Rev.165 (1968), 44.

    Google Scholar 

  12. Růžička T., Rohlena K., Czech. J. Phys.B 22 (1972), 920.

    Google Scholar 

  13. Ulianov K. N., Menachin L. P., JTP51 (1971), 2545.

    Google Scholar 

  14. Ecker G., Kröll W., Zöller O., Phys. Fluids7 (1964), 2001.

    Google Scholar 

  15. Pfau S., Rutscher A., Beitr. Plasmaphys.12 (1972), 53.

    Google Scholar 

  16. Cohen I. M., Whitman A. M., Phys. Fluids16 (1973), 307.

    Google Scholar 

  17. Kagan Yu. M., Khristov N. N., Optika i spektroshopia26 (1969), 886.

    Google Scholar 

  18. Heymann P., Beitr. Plasmaphys.9 (1969), 491.

    Google Scholar 

  19. Reimann H., Heymann P., Beitr. Plasmaphys.10 (1970), 417.

    Google Scholar 

  20. Landolt-Börnstein, Zahlenwerte und Funktionen. IV. Bd., 4. Teil-Bandteil B, pp. 587.

  21. Golubovskii Yu. B., Michel P., Beitr. Plasmaphys.13 (1973), 220.

    Google Scholar 

  22. Golubovskii Yu. B., Kagan Yu. M., Michel P., Beitr. Plasmaphys.11 (1971), 121.

    Google Scholar 

  23. Golubovskii Yu. B., Kagan Yu. M., Liagushczenko R. I., Michel P., Beitr. Plasmaphys.8 (1968), 445.

    Google Scholar 

  24. Wojaczek K., private communication.

  25. Pfau S.,Rutscher A., Proc. VIIth ICPIG, Beograd 1965.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Růžička, T., Rohlena, K. A theory of the positive column constriction in the noble gas discharges at medium pressures. Czech J Phys 26, 282–293 (1976). https://doi.org/10.1007/BF01594266

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01594266

Keywords

Navigation