Skip to main content
Log in

Treatment of bcc transition metals on a modified CGW model

  • Published:
Czechoslovak Journal of Physics B Aims and scope

Abstract

The vibrational spectrum and specific heat of three bcc transition metals α-iron, chromium and tungsten are computed on the basis of modified Clark-Gazis-Wallis angular force model which considers volume forces of Krebs' nature. The calculations are made using the Blackman's root sampling technique for a discrete subdivision in wave-vector space. The calculated lattice specific heats and the effective Debye temperatures are compared with the available experimental data. The results show a reasonably satisfactory agreement with the experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Singh V. P., Prakash J., Hemkar M. P., Il Nuovo Cimento28B (1975), 76.

    Google Scholar 

  2. Singh V. P., Kharoo H. L., Kumar M., Hemkar M. P., Il Nuovo CimentoB32 (1976), 40.

    Google Scholar 

  3. Singh V. P., Kharoo H. L., Hemkar M. P., Ind. J. Phys.50 (1976), 60.

    Google Scholar 

  4. Kharoo H. L., Singh V. P., Pathak L. P., Acta Phys. Academic Scientiarium Hungr.39(1) (1975), 37.

    Google Scholar 

  5. Krebs K., Phys. Lett.10 (1964), 12.

    Google Scholar 

  6. Clark B. C., Gazis D. C., Wallis R. F., Phys. Rev.134 (1964),A1486.

    Google Scholar 

  7. Blackman M., Proc. Roy. Soc.A159 (1937), 416.

    Google Scholar 

  8. Brockhouse B. N. et al., Solid State Comm.5 (1967), 211.

    Google Scholar 

  9. Bolef D. I., de Klerk Phys. Rev.129 (1963), 1063.

    Google Scholar 

  10. Chen S. H., Brockhouse B. N., Solid State Comm.2 (1964), 73.

    Google Scholar 

  11. Curien H., Bull. Soc. Franc. Mineral Crist.75 (1952), 197; Acta Cryst.5 (1952), 393.

    Google Scholar 

  12. Duychaerts G., Physica6 (1939), 401.

    Google Scholar 

  13. Kelley K. K., J. Chem. Phys.11 (1943), 16.

    Google Scholar 

  14. Dixon M., Hoare F. E., Holden T. M., Moody D. E., Proc. Roy. Soc.A285 (1965). 561.

    Google Scholar 

  15. Clusius V. K., Franzosini P, Z Naturforsch.A17 (1962), 522.

    Google Scholar 

  16. Feldman J. L., Phys. Rev.B1 (1970), 448.

    Google Scholar 

  17. Brandt G. B., Rayne J. A., Phys. Rev.132 (1963), 1945.

    Google Scholar 

  18. Graebner J. E., Marcus J. A., Phys. Rev.175 (1968), 659.

    Google Scholar 

  19. Clusius K., Franzosini P., Z. Naturforsch.14a (1959), 99.

    Google Scholar 

  20. Lange F., Z. Physik Chem. (Leipzig)110 (1924), 343.

    Google Scholar 

  21. Zwikker C., Z. Physik52 (1928), 668.

    Google Scholar 

  22. De Launay J., J. Chem. Phys.21 (1953), 1975.

    Google Scholar 

  23. Bhatia A. B., Phys. Rev.97 (1965), 363.

    Google Scholar 

  24. Sharma P. K., Joshi S. K., Chem. Phys.39 (1963), 2633;40 (1964), 662.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The authors are highly thankful to Dr.Jyoti Prakash, Dr. S.Chandra for helpful discussions. One of them (H. L. K.) is thankful to C. S. I. R. India for the award of J. R. F. The computational facilities received from the I. I. T. Kanpur are also acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kharoo, H.L., Gupta, O.P. & Hemkar, M.P. Treatment of bcc transition metals on a modified CGW model. Czech J Phys 28, 77–83 (1978). https://doi.org/10.1007/BF01591311

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01591311

Keywords

Navigation