Skip to main content
Log in

Technology of the (Al,Ga)As/GaAs double heterostructure lasers

  • Published:
Czechoslovak Journal of Physics B Aims and scope

Conclusion

Even thqugh the LPE growth of (Al,Ga)As layers is now largely a matter of industrial development or routine, there still remain some problems that need fundamental study. We have pointed to two of them: growth of very thin layers and the influence of ambient atmosphere. The problem of automation of the growth process, while being connected with industrial LPE installations, also has a bearing on the fundamental research, e.g. it is important for reproducible preparation of very thin layers.

We did not include in this paper work done in our laboratories in the field of integrated optics. A hybrid combination of DH coherent source with a MESFET GaAs device has been tested; integrated version of this optoelectronic circuit is in preparation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kressel H., Butler J. K.:in Semiconductors and Semimetals, Vol. 14, Chapt. 2, Academic Press, New York, 1979.

    Google Scholar 

  2. Botez D.: Proc. IEE129 (1982) 237.

    Google Scholar 

  3. Alferov Zh. I., Andreev V. M., Gorbunov D. Z., Zhilyaev Yu. V., Morozov E. P., Portnoi E. L., Trofim B. G.: Fiz. Tekh. Poluprovodn.4 (1970) 1826.

    Google Scholar 

  4. Hayashi I., Panish M. B., Foy P. W., Sumski S.: Appl. Phys. Lett.17 (1970) 109.

    Google Scholar 

  5. Ripper J. E., Dyment J. C., D'Asaro L. A., Paoli T. L.: Appl. Phys. Lett.18 (1971) 155.

    Google Scholar 

  6. Tsang W. T.: J. Appl. Phys.49 (1978) 1031.

    Google Scholar 

  7. Ward S., Chen C., Liao A. S., Figueroa L.: IEEE J.QE-17 (1973) 453.

    Google Scholar 

  8. Saito K., Ito R.: IEEE J.QE-16 (1980) 205.

    Google Scholar 

  9. Chinone N., Saito K., Ito R., Aiki K., Shige N.: Appl. Phys. Lett.35 (1979) 513.

    Google Scholar 

  10. Ishikawa H., Hanamitsu K., Takagi N., Fujiwara T., Takusagawa M.: IEEE J.QE-17 (1981) 1226.

    Google Scholar 

  11. Chinn S. R., Spiers R. J.: IEEE J.QE-18 (1982) 984.

    Google Scholar 

  12. Procházková O., Novotný J., Kohout J.:in Proc. 5th Czechoslov. Conference on GaAs and Related Compounds, Slovak Acad. Sci., Bratislava, 1982, p. 253.

    Google Scholar 

  13. Small M. B., Ghez R.: J. Appl. Phys.50 (1979) 5322.

    Google Scholar 

  14. Hsieh J. J.: J. Cryst. Growth27 (1974) 49.

    Google Scholar 

  15. Doi A., Hirao M., Ito R.: Jap. J. Appl. Phys.17 (1978) 503.

    Google Scholar 

  16. Isozumi S., Komatsu Y., Kotani T.: Fujitsu Sci. and Technol. J., June 1979, p. 85.

  17. Crossley I., Small M. B.: J. Cryst. Growth11 (1971) 157.

    Google Scholar 

  18. Crossley I., Small M. B.: J. Cryst. Growth15 (1972) 268

    Google Scholar 

  19. Ijuin H., Gonda S.: J. Cryst. Growth33 (1976) 215.

    Google Scholar 

  20. Joullié A.: J. Cryst. Growth38 (1977) 45.

    Google Scholar 

  21. Small M. B., Ghez R.: J. Appl. Phys.51 (1980) 1589.

    Google Scholar 

  22. Small M. B., Ghez R., Potemski R. M., Reuter W.: J. Electrochem. Soc.127 (1980) 1178.

    Google Scholar 

  23. Landman U., Cleveland C. L., Brown C. S.: Phys. Rev. Lett.45 (1980) 2032.

    Google Scholar 

  24. Reynolds C. L., Jr., Tamargo M. C., Anthony P. J., Zilko J. L.: J. Cryst. Growth57 (1982) 109.

    Google Scholar 

  25. Tamargo M. C., Reynolds C. L., Jr.: J. Cryst. Growth57 (1982) 349.

    Google Scholar 

  26. Reynolds C. L., Jr., Tamargo M. C., Gaw C. A.: J. Cryst. Growth59 (1982) 525.

    Google Scholar 

  27. Ghez R., Giess E. A.: Mater. Res. Bull.8 (1973) 31.

    Google Scholar 

  28. Tadano H., Okuno Y., Shimbo M., Nishizawa J.: J. Cryst. Growth37 (1977) 184.

    Google Scholar 

  29. Kimura C., Yanaki T., Hoshino H.: J. Cryst. Growth38 (1977) 233.

    Google Scholar 

  30. Burton W. K., Cabrera N., Frank F. C.: Phil Trans. Royal Soc.243 (1951) 299.

    Google Scholar 

  31. Bennema P.: Thesis. Technical University of Delft, 1965.

  32. Nishizawa J., Okuno Y., Tadano H.: J. Cryst. Growth31 (1974) 215.

    Google Scholar 

  33. Nishizawa J., Okuno Y.: Technical Report TR-41, Research Institute of Electrical Commun., Tohoku University, Sendai, 1978.

    Google Scholar 

  34. Novotný J., Šrobár F., Zelinka J.: Cryst. Res. Technol.18 (1983) 651.

    Google Scholar 

  35. Pořádek J., Voboril J., Marsík J., Hüttel I.:in Proc. Symposium on new technology, Tesla VÚST, Praha, 1978, p. 75.

    Google Scholar 

  36. Novotný J., Hüttel I.:in Proc. Symposium on new technology, Tesla VÚST, Praha, 1982, p. 213.

    Google Scholar 

  37. Novotný J., Kratěna L., Zelinka J.: Slaboproudy obzor44 (1983) 209.

    Google Scholar 

  38. Novotný J., Hüttel I., Šrobár F.: Cryst. Res. Technol. (to be published).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Invited talk at the International Conference on Radiative Recombination and Related Phenomena in III–V Compound Semiconductors, Prague, 4–7 October, 1983.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novotný, J., Hüttel, I. & Šrobár, F. Technology of the (Al,Ga)As/GaAs double heterostructure lasers. Czech J Phys 34, 485–492 (1984). https://doi.org/10.1007/BF01590092

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01590092

Keywords

Navigation