Skip to main content
Log in

Characteristics of π,\(\bar p\), and antinuclei frompp collisions

  • Published:
Zeitschrift für Physik C Particles and Fields

Abstract

An investigation of inclusivepp→π+⋯ in terms of the covariant Boltzmann factor (BF) including the chemical potential μ indicates a) that the temperatureT increases less rapidly than expected from Stefan's law, b) that a scaling property holds for the fibreball velocity of π secondaries, leading to a multiplicity law like ∼E 1/2cm at high energy, and c) that μπ is related to the quark mass: μπ=2m q m π the quark massm q determined by\(T_{\pi ^ - } \) at\(\bar pp\) threshold beingm q =3Tπ≃330 MeV. Because ofthreshold effects \(T_{\bar p}< T_{\pi ^ - } \), whereas\({{\mu _p } \mathord{\left/ {\vphantom {{\mu _p } {\mu _{\pi ^ - } }}} \right. \kern-\nulldelimiterspace} {\mu _{\pi ^ - } }} \simeq {3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}\) as expected from the quark contents of\(\bar p\) and π. The antinuclei\(\bar d\) and\({{\bar t} \mathord{\left/ {\vphantom {{\bar t} {\overline {He^3 } }}} \right. \kern-\nulldelimiterspace} {\overline {He^3 } }}\) observed inpp events are formed by coalescence of\(\bar p\) and\(\bar n\) produced in thepp collision. Semi-empirical formulae are proposed to estimate multiplicities of π,\(\bar p\) and antinuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.T. Chou, Chen-Ning Yang, E. Yen: Phys. Rev. Lett. 54 (1985) 510

    Google Scholar 

  2. T.T. Chou, Chen-Ning Yang Phys. Rev. D32 (1985) 1692

    Google Scholar 

  3. — Phys. Rev. Lett. 55 (1985) 1359

    Google Scholar 

  4. T.F. Hoang, B. Cork: Z. Phys. C-Particles and Fields 38 (1988) 608; T.F. Hoang: Phys. Rev. D, in press

    Google Scholar 

  5. E. Fermi: Prog. Theor. Phys. 5 (1950) 570;

    Google Scholar 

  6. — Phys. Rev. 81 (1951) 683

    Google Scholar 

  7. L.D. Landau: Akad. Nauk SSSR, sr. fiz. 17 (1953) 51

    Google Scholar 

  8. R. Hagedorn: Nuovo Cimento Suppl. 3 (1965) 167; Nuovo Cimento 56A (1968) 1027; Rev. Lett. Nuovo Cimento, 6 (1982) N10

    Google Scholar 

  9. See. e.g. S. Weinberg: Gravitation and cosmology p. 530: New York: Wiley 1972

    Google Scholar 

  10. T.F. Hoang Nucl. Phys. B38 (1972) 333

    Google Scholar 

  11. — Phys. Rev. D12 (1975) 296

    Google Scholar 

  12. ibid17 (1978) 927

    Google Scholar 

  13. ibid24 (1981) 1406

    Google Scholar 

  14. Except onenp experiment at 3 GeV/c, W.B. Fowler et al.: Phys. Rev. 95 (1954) 1026; we use the following 221-1 data: (a) 6.92 GeV/c, S. Danieli et al.: Nucl. Phys. B27 (1971) 157; (b) 10 GeV/c, P. Almeida et al.: Phys. Rev. 174 (1968) 1638; (c) 12 GeV/c, J.L. Day et al.: Phys. Rev. Lett. 18 (1969) 1218; (d) 10, 88, 18, 21.1 and 24.1 GeV/c, D.B. Smith et al.: Phys. Rev. Lett. 23 (1968) 1064; (e) 19.2 GeV/c, H. Bøgglid et al.: Nucl. Phys. B27 (1971) 1; (f) 28 GeV/c, R.S. Panvani et al.: Phys. Lett., 38B (1972) 55; (g) 69 GeV/c, V.V. Ammosov et al.: Phys. Lett. 42B (1972) 519; F. Binon et al.: ibid. Phys. Lett 30B (1969) 506 (h) 100 GeV/c, J.W. Chapman et al.: Phys. Lett. 47B (1973) 465; (i) 205 GeV/c, S. Barish et al.: Phys. Rev. D9 (1974) 2689; G. Charlton et al.: Phys. Rev. Lett 30 (1973) 594 (j) 303 GeV/c, P.T Dao et al.: Phys. Rev. Lett. 39 (1972) 1627; (k)vs=43, 60 GeV, B. Alpan et al.: Nucl. Phys. B100, 237 (1975); A. Breakstone et al.: Phys. Rev D30 (1984) 528

    Google Scholar 

  15. UA1 Coll. G. Arnisson et al.: Phys. Lett. 118B (1982) 167

    Google Scholar 

  16. We use the data compiled by the Bologna Group, C. Albini et al.: Nuovo Cimento 101A (1976) and assume for π multiplicityn =(n ch−1)/2

  17. UA5 Coll., G.I. Alner et al.: Phys. Lett. 160B (1985) 193, 199

    Google Scholar 

  18. Bologna Group M. Antimucci et al.: Nuovo Cimento 6 (1973) 121;

    Google Scholar 

  19. — A.M. Rossi et al.: Nucl. Phys. 84B (1975) 269

    Google Scholar 

  20. Bologna-Saclay-LAPP Coll. A. Bussieie, et al.: Nucl. Phys. 174 (1980) 1

    Google Scholar 

  21. Bologna-Padova-Saclay Coll., N. Bozzoli et al.: Nucl. Phys. B144 (1978) 317

    Google Scholar 

  22. Serpukhov-Yu.M. Antipov et al.: Nucl. Phys. 31B (1971) 235;

    Google Scholar 

  23. — Phys. Lett. 34B (1971) 164

    Google Scholar 

  24. Bologna-Padova-LAPP Coll., W. Bozzoli et al.: Nucl. Phys. B 144 (1978) 317 The parameters of fit with (18) arefuc=1,p=0.31±0.02 andfuc=1/A!,p=0.77±0.09, assumingT=150MeV

    Google Scholar 

  25. We use theA-dependence ofn ofp-nucleus data of JINR experiment: N.K. Bish et al.: J. Nucl. Phys. 30 (1979) 824.

    Google Scholar 

  26. See e.g. M. Deritchmann et al.: Nucl. Phys. B70 (1974) 189

    Google Scholar 

  27. See, e.g., the two-temperature model of C.K. Chou et al.: Phys. Rev. D29 (1984) 2127. They assume an exponential law for eachT:Ae −p⊥/T. According to their values for the experiment of 221-3 Collider [10], namelyT 1-2774 MeV,T 2=664 MeV andA 1/A 2=500, the averageP should be ∼T 2, compared to 424±1 MeV/c, indicating a non-negligible transverse velocitya≃0.36 of the fireball

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by the Director, Office of Energy Research, Division of Nuclear Physics, Office of High Energy and Nuclear Physics, of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098, and by NASA under Grant NGR05-003-513

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoang, T.F., Crawford, H.J. Characteristics of π,\(\bar p\), and antinuclei frompp collisions. Z. Phys. C - Particles and Fields 43, 215–221 (1989). https://doi.org/10.1007/BF01588208

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01588208

Keywords

Navigation