Skip to main content
Log in

Determination of diffusion coefficient in melts by the method of stationary diffusion source

  • Published:
Czechoslovak Journal of Physics B Aims and scope

Abstract

This method eliminates some shortcomings encountered with other methods currently used for determination of the diffusion coefficients in melts. There are, with reasonable accuracy, fulfilled the starting and boundary conditions of a diffusion equation, and the diffusion process is not disturbed by melt flowing. This method considers a diffusion source at the boundary of a diffusion range and, when fulfilling certain conditions, both the solution of the diffustion equation and the evaluation of the diffusion coefficients is very simple. The required diffusion source, having a constant power, can be simulated by contacting the saturated gases of a substance, the diffusion of which is being investigated, with melt surface in which the diffusion takes place. The method takes into account application of radionuclides and this article brings about some criteria for application of that method. Simplicity is the main feature of the experimental arrangement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stark B. V., Chelischev J. V., Izv. AN SSSR, OTN11 (1959), 1689.

    Google Scholar 

  2. Malkin V. I., Mogutnov B. M., Fizicheskaya chimiya rasplavennych solej i schlakov, Gos. Izd. nauchno-technicheskoi literatury, Moskva 1962, 391.

    Google Scholar 

  3. Lange W., Pippel W., Zeppenfeld G., Zeit. f. Phys. Chem.221 (1962), 264.

    Google Scholar 

  4. Anderson J. S.,Saddington K., J. Chem. Soc. (London) (1949), 381.

  5. Holbrook W. P., Furgas C. C., Joseph T. L., Industrial and Engencering Chem.24 (1932), 993.

    Google Scholar 

  6. Niwa K., Shimaji M., Watanabe Y., Yokokawa K., Journal of Metals2 (1957), 97.

    Google Scholar 

  7. Niwa K., Shimaji M., Kado S., Watanabe Y., Yokawa K., Trans. AIME209 (1957), 96.

    Google Scholar 

  8. Mayer R. E., Nachtrieb N. H., J. Chem. Phys.23 (1955), 1851.

    Google Scholar 

  9. Petrescu N., Zamirea S., Ganovici S., Rev. Roum. Chim.13 (1968), 865.

    Google Scholar 

  10. Lange W., Pippel W., Bendel E., Z. Phys. Chemie212 (1959), 238.

    Google Scholar 

  11. Yang L., Simnad M. T., Derge I., Journal of Metals11 (1956), 1577.

    Google Scholar 

  12. Grace E. E., Derge G., Journal of Metals7 (1957), 7.

    Google Scholar 

  13. Gupta Y. P., King T. B., Trans. Met. Soc. AIME239 (1967), 1701.

    Google Scholar 

  14. Lange W., Pippel W., Schönherr M., Isotopentechnik2 (1962), 226.

    Google Scholar 

  15. Careri G., Paoletti A., Il nuovo cimento2 (1955), 574.

    Google Scholar 

  16. Careri G., Paoletti A., Vicentini M., Il nuovo cimento10 (1958), 1088.

    Google Scholar 

  17. Morgan B. W., Kitschener J. A., Trans. Farad. Soc.50 (1954), 51.

    Google Scholar 

  18. Lange W., Pippel W., Opperman H., Isotopentechnik2 (1962), 132.

    Google Scholar 

  19. Schurigin P. M., Schantarin V. D., Journal fys. chimii42 (1968), 463.

    Google Scholar 

  20. Lychko I. I., Voropai N. M., Schantarin V. D., Avtom. svarka20 (1967), 9.

    Google Scholar 

  21. Mineo Koseka, Susumu Minowa, Tetsu Hagane53 (1967), 1467.

    Google Scholar 

  22. Edwards J. B., Hucke E. E., Martin J. J., J. Elektrochem. Soc.115 (1968), 448.

    Google Scholar 

  23. Masson C. R., Whiteway S. G., Can. Met. Quart.6 (1967), 199.

    Google Scholar 

  24. Tschutsmarew S. J., Karnauchov M. M., Izvestiya, DTN1 (1953), 82.

    Google Scholar 

  25. Tichonov A. N., Samarskiy A. A., Rovnice matematické fysiky, ČSAV, Praha 1955.

    Google Scholar 

  26. Lozgachev V. I., Journal fis. chimii33 (1959), 2755.

    Google Scholar 

  27. Lozgachev V. I., Journal fis. chimii34 (1960), 306.

    Google Scholar 

  28. Nesmejanov A. N., Davlenie para chimicheskich elementov, AN, Moskva 1961.

    Google Scholar 

  29. Kubíček P., Stanovení koeficientu difuze v taveninách metodou stacionárního difuzního zřídla, Výzkumná zpráva VŠB, Ostrava, 1971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work has been carried out in the scope of the State Research Task III-5-8 “Equilibrium States of Metallurgical Systems”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kubíček, P. Determination of diffusion coefficient in melts by the method of stationary diffusion source. Czech J Phys 23, 1118–1132 (1973). https://doi.org/10.1007/BF01586851

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01586851

Keywords

Navigation