Skip to main content
Log in

Presence of a metallothionein-like protein in the bovine pineal gland

  • Original Papers
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Summary

The high concentration of zinc in the bovine pineal gland prompted us to investigate the existence of a zinc-binding protein in this organ. In this study, we report that the subcellular distribution of zinc in the bovine pineal gland is nonuniform, with the crude nuclear, mitochondrial, microsomal, and supernatant fractions having 0.264±0.038, 0.160±0.019, 0.130±0.016, and 0.287±0.010 Μg zinc/mg protein, respectively. Furthermore, gel filtration studies using Sephadex G-75 and a 105,000 g supernatant fraction revealed two zinc binding protein peaks that bind 1.7 and 3.7 Μg Zn++/mg protein, respectively. Furthermore, purification of the protein peak with an elution volume (ve/vo) of 2.06 on anion exchange chromatography (DEAE-A 25) yielded a single protein peak which binds 10 Μg zinc/mg protein. The comparative high performance liquid Chromatographic (HPLC) profiles of the zinc-induced hepatic metallothionein isoform I (retention time=17.39 min) and of the bovine pineal metallothionein-like protein isoform I (retention time=17.49 min) are similar. Since zinc is a potent inhibitor of sulfhydryl-containing enzymes and receptor sites, we investigated the effects of zinc and found that it inhibited the binding of [3H]glutamate (IC 50=80 ΜM) and of [3H]spiroperidol (IC 50=0.6 mM) to the pineal membranes. The results of these studies are interpreted to indicate that the bovine pineal gland possesses an active and dynamic zinc homeostatic mechanism, whose precise function(s) remain(s) to be delineated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Awad A, Ebadi M (1985) The characteristics of metallothioneins in bovine pineal gland. Fed Proc 44: 3053

    Google Scholar 

  • Bradford MN (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254

    Google Scholar 

  • Buhler RHO, Kagi JHR (1979) Spectroscopic properties of zinc-metallothionein. In: Kagi JHR, Nordberg M (eds) Metallothionein. BirkhÄuser, Basel, pp 211–220

    Google Scholar 

  • Coyle JT (1980) Amino acid receptors. In: Bylund (ed) Receptor binding techniques. Society for Neuroscience, Bethesda, MD, pp 140–149

    Google Scholar 

  • Crawford IR, Harris NF (1984) Distribution and accumulation of zinc in whole brain and subcellular fractions of hippocampal homogenates. In: Frederickson CJ, Howell GA, Kasarskis EJ (eds) The neurobiology of zinc. Alan R Liss, New York, pp 157–171

    Google Scholar 

  • Creese I, Schneider R, Snyder SH (1977)3H-Spiroperidol labels dopamine receptors in pituitary and brain. Eur J Pharmacol 46: 377–381

    Google Scholar 

  • Cunnane SC, Horrobin DF, Manku MS, Oka M (1979) Alteration of tissue zinc distribution and biochemical analysis of serum following pinealectomy in the rat. Endocr Res Comm 6/4: 311–319

    Google Scholar 

  • De Robertis E, De Iraldi AP, Rodriquez G, Arnaiz D, Saliganicoff L (1962) Cholinergic and non-cholinergic nerve endings in rat brain-I. Isolation and subcellular distribution of acetylcholine and acetylcholinesterase. J Neurochem 9: 23–35

    Google Scholar 

  • Ebadi M (1985) Update on regulation and function of pyridoxal phosphate in CNS. In: Osborne N (ed) Selected topics from neurochemistry. Pergamon Press. Oxford, pp 341–376

    Google Scholar 

  • Ebadi M (1986a) Biochemical characterization of a metallothionein-like protein in rat brain. Biol Trace Element Res 11: 101–116

    Google Scholar 

  • Ebadi M (1986b) Biochemical alteration of a metallothionein-like protein in developing rat brain. Biol Trace Element Res 11: 117–128

    Google Scholar 

  • Ebadi M (1986c) Catabolic pathways of pyridoxal phosphate and derivatives. In: Dolphin D, Paulson R, Avramovic O (eds) Pyridoxal phosphate: chemical, biochemical and medical aspects. Wiley, New York, pp 449–476

    Google Scholar 

  • Ebadi M, Awad A, Hegazy MR (1987) The role of pineal metallothionein in nucleic acid metabolism. Neuroendocrinol Lett 9: 280

    Google Scholar 

  • Ebadi M, Govitrapong P (1979) Microassay and properties of pyridoxal phosphate phosphatase in rat pineal gland. Int J Biochem 10: 705–711

    Google Scholar 

  • Ebadi M, Govitrapong P (1986) Orphan transmitters and receptor sites. Pineal Res Rev 4: 1–54

    Google Scholar 

  • Ebadi M, Hama Y (1986) Zinc-binding proteins in the brain. Adv Exp Med Biol 203: 557–570

    Google Scholar 

  • Ebadi M, Itoh M, Bifano J, Wendt K, Earle A (1981) The role of Zn++ in pyridoxal phosphate mediated regulation of glutamic acid decarboxylase in brain. Int J Biochem 13: 1107–1112

    Google Scholar 

  • Ebadi M, Wallwork JC (1985) Zinc-binding proteins (ligands) in brains of severely zinc-deficient rats. Biol Trace Element Res 7: 124–139

    Google Scholar 

  • Ebadi M, White R, Swanson S (1984) The presence and functions of zinc-binding proteins in developing and mature brains. In: Frederickson CJ, Howell GA, Kasarskis EJ (eds) The neurobiology of zinc. Part A: physiochemistry, anatomy, and techniques. Alan R Liss, New York, pp 39–57

    Google Scholar 

  • Evans GW, Johnson PE, Brushmiller JG, Ames RW (1979) Detection of labile zinc-binding ligands in biological fluids by modified gel filtration chromatography. Anal Chem 51: 839

    Google Scholar 

  • Galdes A, Vasak M, Hill HAO, Kagi JHR (1978)1H NMR spectra of metallothioneins. FEBS Lett 92: 17–21

    Google Scholar 

  • Govitrapong P, Ebadi M, Murrin LC (1986) Identification of a Cl/Ca2+ -dependent glutamate (quisqualate) binding site in bovine pineal organ. J Pineal Res 3: 223–234

    Google Scholar 

  • Govitrapong P, Hama Y, Awad A, Ebadi M (1985) The inhibitory actions of zinc and cadmium on D2-dopamine and glutamate receptors in bovine pineal gland. Trans Endocr Soc 67: 1272

    Google Scholar 

  • Govitrapong P, Murrin LC, Ebadi M (1984) Characterization of dopaminergic receptor sites in bovine pineal gland. J Pineal Res 1: 215–226

    Google Scholar 

  • Gulati S, Paliwal VK, Sharma M, Gill KD, Nath R (1987) Isolation and characterization of a metallothionein-like protein from monkey brain. Toxicology 45: 53–64

    Google Scholar 

  • Howell GA, Frederickson CJ (1984) Electrical stimulation facilitates zinc turnover in hippocampal slices. In: Frederickson CJ, Howell GA, Kasarskis EJ (eds) The neurobiology of zinc. Alan R Liss, New York, pp 141–155

    Google Scholar 

  • Hu KH, Friede RL (1968) Topographic determination of zinc in human brain by atomic absorption spectrophotometry. J Neurochem 15: 677–685

    Google Scholar 

  • Itoh M, Ebadi M, Swanson S (1983) The presence of zinc-binding proteins in brain. J Neurochem 41: 823–829

    Google Scholar 

  • Kagi JHR, Kojima Y (eds) (1987) Metallothionein II. BirkhÄuser, Basel

    Google Scholar 

  • Kagi JHR, Nordberg M (eds) (1979) Metallothionein. BirkhÄuser, Basel

    Google Scholar 

  • Kagi JHR, Vallee BL (1960) Metallothionein: a cadmium- and zinc-containing protein from equine renal cortex. J Biol Chem 235: 3460–3465

    Google Scholar 

  • Karin M, Herschman HR (1980) Characterization of the metallothioneins induced in hela cells by dexamethasone and zinc. Eur J Biochem 107: 395–401

    Google Scholar 

  • Kasarskis EJ (1984) Regulation of zinc homeostasis in rat brain. In: Frederickson CJ, Howell GA, Kasarskis EJ (eds) The neurobiology of zinc. Alan R Liss, New York, pp 27–37

    Google Scholar 

  • Klauser S, Kagi JHR, Wilson KJ (1983) Characterization of isoprotein patterns in tissue extracts and isolated samples of metallothioneins by reverse-phase high-pressure liquid chromatography. Biochem J 209: 71–80

    Google Scholar 

  • Kojima Y, Berger C, Kagi JHR (1979) The amino acid sequence of equine metallothioneins. In: Kagi JHR, Nordberg M (eds) Metallothionein. BirkhÄuser, Basel, pp 153–161

    Google Scholar 

  • Lanuza DM, Marotta SF (1974) Circadian and basal interrelationships of plasma cortisol and cations in women. Aerospace Med 45: 864–868

    Google Scholar 

  • Lowry OH, Rosebrough MJ, Rarr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193: 265–275

    Google Scholar 

  • Lucier GW, Hook GER (1984) Metallothionein and cadmium nephrotoxicity. Environ Health Perspect 54: 1–380

    Google Scholar 

  • Lucier GW, Hook GER (1986) High affinity metal binding proteins in non-mammalian species. Environ Health Perspect 56: 1–445

    Google Scholar 

  • Margoshes M, Vallee BL (1957) A cadmium binding protein from equine kidney cortex. J Am Chem Soc 79: 4813–4814

    Google Scholar 

  • Markowitz ME, Rosen JF, Mizruchi M (1985) Circadian variations in serum zinc (Zn) concentrations: correlation with blood ionized calcium, serum total calcium and phosphate in humans. Am J Clin Nutr 41: 689–696

    Google Scholar 

  • McCormick DB, Gregory ME, Snell EE (1961) Pyridoxal phosphokinase. I. Assay, distribution, purification and properties. J Biol Chem 236: 2076–2084

    Google Scholar 

  • Moore-Ede MC, Czeisler CA, Richardson GS (1983) Circadian timekeeping in health and disease: part 1. Basic properties of circadian pacemakers. N Engl J Med 309: 469–472

    Google Scholar 

  • Paliwal VK, Takahashi T, Ebadi M (1988) The biochemical characterization of a metallothionein-like protein from bovine hippocampus. J Cell Biochem [Suppl] 12D: 346

    Google Scholar 

  • Smeyers-Verbeke J, Defrise-Gussenhoven E, Ebinger G, Lowenthal A, Massart DL (1974) Distribution of Cu and Zn in human brain tissue. Clin Chim Acta 51: 309–314

    Google Scholar 

  • Snell EE, Haskell BE (1971) The metabolism of vitamin B6. Com Biochem 21: 41–71

    Google Scholar 

  • Spiro TG (1980) Nucleic acid metal ion interactions. Wiley, New York

    Google Scholar 

  • Srivastava A, Setty BS (1985) The distribution of zinc in the subcellular fractions of the rhesus monkey testis. Biol Trace Element Res 7: 83–87

    Google Scholar 

  • Suzuki K, Sunaga H, Yajima I (1984) Separation of metallothionein into isoforms by column switching on gel permeation and ion-exchange columns with high-performance liquid chromatography-atomic-absorption spectrophotometry. J Chromatogr 303: 131–136

    Google Scholar 

  • Takahashi T, Paliwal VK, Ebadi M (1988) The presence of a metallothionein-like protein in bovine retina. J Cell Biochem [Suppl] 12 D: 353

    Google Scholar 

  • Vallee BL (1983) Zinc in biology and biochemistry. In: Spiro TG (ed) Zinc enzymes, vol 5. (Metal ion in biology series). Wiley, New York, p 3

    Google Scholar 

  • Vallee BL, Galdes A (1984) The metallobiochemistry of zinc enzymes. Adv Enzymol 56: 284–430

    Google Scholar 

  • Werling LL, Nadler JV (1982) Complex binding of L-[3H]glutamate to hippocampal synaptic membranes in the absence of sodium. J Neurochem 38: 1050–1062

    Google Scholar 

  • Wong PY, Fritze K (1969) Determination by neutron activation of copper, manganese, and zinc in the pineal body and other areas of brain tissue. J Neurochem 16: 1231–1234

    Google Scholar 

  • Wurtman RJ, Axelrod J, Kelly DE (1968) The pineal. Academic Press, New York

    Google Scholar 

  • Wurtman RJ, Ozaki Y (1978) Physiological control of melatonin synthesis and secretion: mechanisms generating rhythms in melatonin, methoxytryptophol, and arginine. vasotocin levels and effects on the pineal of endogenous catecholamines, the estrous cycle, and environmental lighting. J Neural Transm [Suppl] 13: 59–70

    Google Scholar 

  • Wuyts L, Smeyers-Verbeke J, Massart DL (1976) Atomic absorption spectrophotometry of copper and zinc in human brain tissue, a critical investigation of two digestion techniques. Clin Chim Acta 72: 405–407

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Awad, A., Govitrapong, P., Hama, Y. et al. Presence of a metallothionein-like protein in the bovine pineal gland. J. Neural Transmission 76, 129–144 (1989). https://doi.org/10.1007/BF01578753

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01578753

Keywords

Navigation