Skip to main content
Log in

Tracing of Zinc Nanocrystals in the Anterior Pituitary of Zinc-Deficient Wistar Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The aim of this study was to trace zinc nanocrystals in the anterior pituitary of zinc-deficient Wistar rats by using autometallographic technique. Male Wistar rats (30–40 days of age, pre-pubertal period) of 40–50 g body weight were divided into the following: the ZC (zinc control) group—fed with 100 ppm zinc in diet, the ZD (zinc-deficient) group—fed with zinc-deficient (1.00 ppm) diet and the PF (pair-fed) group—received 100 ppm zinc in diet. The experiments were set for 2 and 4 weeks. Pituitary was removed and processed for the autometallographic technique. The control and pair-fed groups retained their normal morphological features. However, male Wistar rats fed on zinc-deficient diet for 2 and 4 weeks displayed a wide range of symptoms such as significant (P < 0.05) decrease in diet consumption, body weight and pituitary weight and decrease in gradation of intensity of zinc nanocrystals in the nuclei. The present findings suggest that the dietary zinc deficiency causes decreased intensity of zinc nanocrystals localization and their distribution in the pituitary thereby contributing to the dysfunction of the pituitary of the male Wistar rats. The severity of zinc deficiency symptoms progressed after the second week of the experiment. Decreased intensity of zinc nanocrystals attenuates the pituitary function which would exert its affect on other endocrine organs impairing their functions indicating that the metabolic regulation of pituitary is mediated to a certain extent by zinc and/or hypothalamus-hypophysial system which also reflects its essentiality during the period of growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Maret W, Sandstead HH (2006) Zinc requirements and the risks and benefits of zinc supplementation. J Trace Elem Med Biol 20:3–18

    Article  CAS  PubMed  Google Scholar 

  2. WHO (1973) Trace elements in human nutrition. WHO Tech Rep Ser 532:9–15

    Google Scholar 

  3. Vallee BL, Falchuk H (1993) The biochemical basis of zinc physiology. Physiol Rev 73:79–118

    CAS  PubMed  Google Scholar 

  4. Prasad AS (2012) Discovery of human zinc deficiency: 50 years later. J Trace Elem Med Biol 26:66–69

    Article  CAS  PubMed  Google Scholar 

  5. Underwood EJ (1977) Zinc. In: Underwood E (ed) Trace elements in human and animal nutrition. Academic Press, New York, pp. 196–247

    Chapter  Google Scholar 

  6. Hambidge KM, Walravens PA (1982) Disorders of mineral metabolism. Clin Gastroenterol 11:87–118

    CAS  PubMed  Google Scholar 

  7. Lei KY, Abbasi A, Prasad AS (1976) Function of pituitary-gonadal axis in zinc deficient rats. Am J Phys 230:1730–1732

    CAS  Google Scholar 

  8. Bedwal RS, Bahuguna A (1994) Zinc, copper and selenium in reproduction. Experientia 50:626–640

    Article  CAS  PubMed  Google Scholar 

  9. Thorlacius-Ussing O (1987) Zinc in the anterior pituitary of rat: a histochemical and analytical work. Neuroendocrinology 45:233–242

    Article  CAS  PubMed  Google Scholar 

  10. Root AW, Duckett G, Sweetland M, Reiter EO (1979) Effects of zinc deficiency upon pituitary function in sexually mature and immature male rats. J Nutr 109:958–964

    CAS  PubMed  Google Scholar 

  11. Hafiez AA, el-Kirdassy ZH, Mansourm MM, Sharadam HM, el-Zayat EM (1989) Role of zinc in regulating the testicular function: effect of dietary zinc deficiency on serum levels of gonadotropins, prolactin and testosterone in male albino rats. Nahrung 33:935–940

    Article  CAS  PubMed  Google Scholar 

  12. Stoltenberg M, Danscher G (2000) Histochemical differentiation of autometallgraphically traceable metals (Au, Ag, Hg, Bi and Zn): protocols for chemical removal of separate autometallographic metal clusters in epon sections. Histochem J 32:645–652

    Article  CAS  PubMed  Google Scholar 

  13. Danscher G, Stoltenberg M (2006) Silver enhancement of quantum dots resulting from (1) metabolism of toxic metals in animals and humans, (2) in vivo, in vitro and immersion created zinc–sulphur / zinc–selenium nanocrystals, (3) metal ions liberated from metal implants and particles. Prog Histochem Cytochem 41:57–139

    Article  CAS  PubMed  Google Scholar 

  14. Su H, Cheung A, Danscher G (1997) Zinc-enriched cells in rat pituitary—a combined autometallographic and immunohisto-chemical study. Acta Histochem Cytochem 30:531–536

    Article  CAS  Google Scholar 

  15. Gibson RS (2006) Zinc: the missing link in combating micronutrient malnutrition in developing countries. Proc Nutr Soc 65:51–60

    Article  CAS  PubMed  Google Scholar 

  16. Prasad AS (1991) Discovery of human zinc deficiency and studies in an experimental human model. Am J Clin Nutr 53:403–412

    CAS  PubMed  Google Scholar 

  17. Wallwork JC, Fosmire GJ, Sandstead HH (1981) Effect of zinc deficiency on appetite and plasma amino acid concentrations in the rat. Br J Nutr 45:127–136

    Article  CAS  PubMed  Google Scholar 

  18. Kumari D, Nair N, Bedwal RS (2011) Effect of dietary zinc deficiency on testes of Wistar rats: morphometric and cell quantification. J Trace Elem Med Biol 25:47–53

    Article  CAS  PubMed  Google Scholar 

  19. Hambidge KM, Hambidge C, Jacobs M, Baum JD (1972) Low levels of zinc in hair, anorexia, poor growth and hypogeusia in children. Pediatr Res 6:868–874

    Article  CAS  PubMed  Google Scholar 

  20. Prasad AS (1998) Zinc deficiency in humans: a neglected problem. J Am Coll Nutr 17:542–543

    Article  CAS  PubMed  Google Scholar 

  21. Catalanotto FA, Nanda R (1977) The effects of feeding a zinc deficient diet on taste acuity and tongue epithelium in rats. J Oral Path 6:211–220

    Article  CAS  PubMed  Google Scholar 

  22. Hasegawa H, Kishi T, Suzuki M, Tomita H (1980) Abnormal taste reactivities in zinc deficient rats. Taste and Smell 14:69–71

    Google Scholar 

  23. Goto T, Komai M, Bryant BP, Furukawa Y (2000) Reduction in carbonic anhydrase activity in the tongue epithelium and submandibular gland in zinc deficient rats. Int J Vitam Nutr Res 70:110–118

    Article  PubMed  Google Scholar 

  24. Tomita H (1990) Zinc in taste and smell disorder. In: Tomita H (ed) Trace elements in clinical medicine. Springer-Verlag, Tokyo, pp. 15–37

    Chapter  Google Scholar 

  25. Kumari D, Nair N, Bedwal RS (2012) Protein carbonyl, 3β- and 17β-hydroxysteroid dehydrogenases in testes and serum FSH, LH and testosterone levels in zinc deficient Wistar rats. Biofactors 38:234–239

    Article  CAS  PubMed  Google Scholar 

  26. Giugliano R, Millward DJ (1984) Growth and zinc homeostasis in the severely zinc deficient rat. Br J Nutr 52:545–560

    Article  CAS  PubMed  Google Scholar 

  27. Yamasaki K, Kaneko M, Matsuda K, Sakata SF, Tamaki N (1999) The correlation between feed-intake cycle and nutritional zinc deficient status in rats. J Nutr Sci Vitaminol 45:621–632

    Article  CAS  PubMed  Google Scholar 

  28. Kawamoto JC, Castonguay TW, Keen CL, Stern JS, Hurley LS (1986) Age, sex and reproductive status alter the severity of anorexia in zinc deficient rats. Physiol Behav 38:485–493

    Article  CAS  PubMed  Google Scholar 

  29. McNall AD, Etherton TD, Fosmire GJ (1995) The impaired growth induced by zinc deficiency in rats is associated with decreased expression of the hepatic insulin-like growth factor I and growth hormone receptor genes. J Nutr 125:874–879

    CAS  PubMed  Google Scholar 

  30. Cho YE, Lomeda RA, Ryu SH, Sohn HY, Shin HI, Beattie JH, Kwun IS (2007) Zinc deficiency negatively affects alkaline phosphatase and the concentration of Ca, Mg and P in rats. Nutr Res Pract 1:113–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hartoma RJ, Nahoul K, Netter A (1977) Zinc, plasma androgens and male sterility. Lancet 2:1125–1126

    Article  CAS  PubMed  Google Scholar 

  32. Habib FK (1978) Zinc and the steroid endocrinology of the human prostate. J Steroid Biochem 9:403–407

    Article  CAS  PubMed  Google Scholar 

  33. Dorup I, Flyvberg A, Everts ME, Clausen T (1991) Role of insulin-like growth factor-I and growth hormone in growth inhibition induced by magnesium and zinc deficiencies. Br J Nutr 66:505–521

    Article  CAS  PubMed  Google Scholar 

  34. Focht S, Fosmire G, Hymer WC (1991) Effects of zinc deficiency on pituitary somatotrophs. FASEB J 5:A940

    Google Scholar 

  35. Jiang Y, Yu VC, Buchholz F, O'Connell S, Rhodes SJ, Candeloro C, Xia YR, Lusis AJ, Rosenfeld MG (1996) A novel family of Cys-Cys, His-Cys- zinc finger transcription factors expressed in developing nervous system and pituitary gland. J Biol Chem 271:10723–10730

    Article  CAS  PubMed  Google Scholar 

  36. Wu FY, Wu CW (1987) Zinc in DNA replication and transcription. Annu Rev Nutr 7:251–272

    Article  CAS  PubMed  Google Scholar 

  37. Thiers RE, Vallee BL (1957) Distribution of metals in subcellular fractions of rat liver. J BiolChem 226:911–920

    CAS  Google Scholar 

  38. Haase H, Rink L (2014) Zinc signals and immune function. Biofactors 40:27–40

    Article  CAS  PubMed  Google Scholar 

  39. Kambe T, Tsuji T, Hashimoto A, Itsumura N (2015) The physiological, biochemical, and molecular roles of zinc transporters in zinc homeostasis and metabolism. Physiol Rev 95:749–784

    Article  CAS  PubMed  Google Scholar 

  40. Berg JM, Godwin HA (1997) Lessons from zinc-binding peptides. Annu Rev Biophys Biomol Struct 26:357–371

    Article  CAS  PubMed  Google Scholar 

  41. Frederickson CJ, Koh JY, Bush AI (2005) The neurobiology of zinc in health and disease. Nat Rev Neurosci 6:449–462

    Article  CAS  PubMed  Google Scholar 

  42. Palmiter RD, Findley SD (1995) Cloning and functional characterization of a mammalian zinc transporter that confers resistance to zinc. EMBO J 14:639–649

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kay AR (2003) Evidence for chelatable zinc in the extracellular space of the hippocampus, but little evidence for synaptic release of Zn. J Neurosci 23:6847–6855

    CAS  PubMed  Google Scholar 

  44. Bastian C, Li YV (2007) Fluorescence imaging study of extracellular zinc at the hippocampal mossy fiber synapse. Neurosci Lett 419:119–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zalewski P, Truong-Tran A, Lincoln S, Ward D, Shankar A, Coyle P, Jayaram L, Copley A, Grosser D, Murgia C, Lang C, Ruffin R (2006) Use of a zinc fluorophore to measure labile pools of zinc in body fluids and cell-conditioned media. BioTechniques 40:509–520

    Article  CAS  PubMed  Google Scholar 

  46. Nitzan YB, Sekler I, Silverman WF (2004) Histochemical and histofluorescence tracing of chelatable zinc in the developing mouse. J Histochem Cytochem 52:529–539

    Article  CAS  PubMed  Google Scholar 

  47. Lu Q, Haragopal H, Slepchenko KG, Stork C, Li YV (2016) Intracellular zinc distribution in mitochondria, ER and the Golgi apparatus. Int J Physiol Pathophysiol Pharmacol 8:35–43

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The author (Anjana Kuldeeep) would like to thank the reviewers for their helpful review of this manuscript.

This experimental work has been supported by Professor B.K. Shrivastav, Director USIC Facility, University of Rajasthan, Jaipur, and Mohanaseen Reza for the co-operation in USIC-Electron Microscope Facility, University of Rajasthan, Jaipur. I would like to thank to the Central Laboratory Facility-Centre for Advanced Studies (CAS), Department of Zoology, University of Rajasthan, for providing the necessary facilities. This study was funded by the University Grants Commission, New Delhi, India, for awarding me Rajiv Gandhi Fellowship to pursue this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjana Kuldeep.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuldeep, A., Nair, N. & Bedwal, R.S. Tracing of Zinc Nanocrystals in the Anterior Pituitary of Zinc-Deficient Wistar Rats. Biol Trace Elem Res 177, 316–322 (2017). https://doi.org/10.1007/s12011-016-0881-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-016-0881-2

Keywords

Navigation