Skip to main content
Log in

Determination of the rate-limiting step(s) in the biosynthetic pathways leading to penicillin and cephalosporin

  • Review
  • Published:
Journal of Industrial Microbiology

Summary

This paper is a review of strategies that have been used, or that could be used, to determine the rate-limiting step(s) in the biosynthetic pathways leading to penicillin or cephalosporin. Information is summarized from published material that involves studies with low-producing strains ofPenicillium chrysogenum andCephalosporium acremonium. We also summarize information derived from some high-producing production strains. Identification of the rate-limiting step(s) was of great interest to us as the first step in a rational program to further improve antibiotic titers of these highly developed strains. A number of approaches that could be used to elucidate the rate-limiting step(s) are described herein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barredo, J.L., B. Diez, E. Alvarez and J.F. Martin. 1989. Large amplification of a 35-kb DNA fragment carrying two penicillin biosynthetic genes in high penicillin producing strains ofPenicillium chrysogenum. Curr. Genet. 16: 453–459.

    PubMed  Google Scholar 

  2. Brundidge, S.P., F.C.A. Gaeta, D.J. Hook, C. Sapino, R.P. Elander and R.B. Morin. 1980. Association of 6-oxopiperidine-2-carboxylic acid with penicillin V production inPenicillium chrysogenum fermentations. J. Antibiot. 33: 1348–1351.

    PubMed  Google Scholar 

  3. Chater, K.F. 1990. The improving prospects for yield increase by genetic engineering in antibiotic-producing streptomycetes. Bio/Technol. 8: 115–121.

    Google Scholar 

  4. Chiang, S-J.D., L.T. Chang, Y.S. Chen, H.H. Hou and R.P. Elander. 1991. Strain improvement inPenicillium chrysogenum: From classical genetics to genetic engineering. In: 50 Years of Penicillin Application—History and Trends (Kleinkauf, H. and H. von Dohren, eds.), in press.

  5. Ingolia, T.D. and S.W. Queener. 1989. Beta-lactam biosynthetic genes. Med. Res. Rev. 9: 245–264.

    PubMed  Google Scholar 

  6. Muller, W.H., T.P. van der Krift, A.J.J. Krouwer, H.A.B. Wosten, L.H.M. van der Voort, E.B. Smaal and A.J. Verkleij. 1991. Localization of the pathway of the penicillin biosynthesis inPenicillium chrysogenum. EMBO J 10: 489–495.

    PubMed  Google Scholar 

  7. Pang, C.-P., B. Chakravarti, R.M. Adlington, H.-H. Ting, R.L. White, G.S. Jayatilake, J.E. Baldwin and E.P. Abraham. 1984. Purification of isopenicillin N synthetase. Biochem. J. 222: 789–795.

    PubMed  Google Scholar 

  8. Pirt, S.J. 1987. Microbial physiology in the penicillin fermentation. Trends Biotechnol. 5: 69–72.

    Google Scholar 

  9. Ramos, F.R., M.J. Lopez-Nieto and J.F. Martin. 1985. Isopenicillin N synthetase ofPenicillium chrysogenum, an enzyme that converts δ-(l-α-aminoadipyl)-l-cysteinyl-d-valine to isopenicillin N. Antimicrob. Ag. Chemother. 27: 380–387.

    Google Scholar 

  10. Ramos, F.R., M.J. Lopez-Nieto and J.F. Martin. 1986. Coordinate increase of isopenicillin N synthetase, isopenicillin N epimerase and deacetoxycephalosporin C synthetase in a high cephalosporin-producing mutant ofAcremonium chrysogenum and simultaneous loss of the three enzymes in a non-producing mutant. FEMS Microbiol. Lett. 35: 123–127.

    Google Scholar 

  11. Revilla, G., F.R. Ramos, M.J. Lopez-Nieto, E. Alvarez and J.F. Martin. 1986. Glucose represses formation of δ-(l-α-aminoadipyl)-l-cysteinyl-d-valine and isopenicillin N synthase but not penicillin acyltransferase inPenicillium chrysogenum. J. Bacteriol. 168: 947–952.

    PubMed  Google Scholar 

  12. Roninson, I.B. 1983. Detection and mapping of homologous, repeated and amplified DNA sequences by DNA renaturation in agarose gels. Nucleic Acids Res. 11: 5413–5431.

    PubMed  Google Scholar 

  13. Shen, Y.-Q., S. Wolfe and A.L. Demain. 1986. Levels of isopenicillin N synthetase and deacetoxycephalosporin C synthetase inCephalosporium acremonium producing high and low levels of cephalosporin C. Bio/Technol. 4: 61–64.

    Google Scholar 

  14. Skatrud, P.L., S.W. Queener, D.L. Fisher and J.L. Chapman. 1987. Strain improvement studies inPenicillium chrysogenum using the clonedP. chrysogenum isopenicillin N synthetase gene and the amdS gene ofAspergillus nidulans. SIM Annual Meeting Abstr. P-46.

  15. Skatrud, P.L., A.J. Tietz, T.D. Ingolia, C.A. Cantwell, D.L. Fisher, J.L. Chapman and S.W. Queener. 1989. Use of recombinant DNA to improve production of cephalosporin C byCephalosporium acremonium. Bio/Technol. 7: 477–485.

    Google Scholar 

  16. Smith, D.J., J.H. Bull, J. Edwards and G. Turner. 1989. Amplification of the isopenicillin N synthetase gene in a strain ofPenicillium chrysogenum producing high levels of penicillin. Mol. Gen. Genet. 216: 492–497.

    PubMed  Google Scholar 

  17. Snell, K. and D.A. Duff. 1984. Branched-chain amino acid metabolism and alanine formation in rat diaphragm muscle in vitro. Biochem. J. 223: 831–835.

    PubMed  Google Scholar 

  18. Soliday, C.L., M.S. Crawford and J.A. Rambosek. 1990. Strains ofPenicillium chrysogenum producing high levels of penicillin show no amplification of genes in the biosynthetic pathway. SIM Annual Meeting Abstr. P-43.

  19. Usher, J.J., M.A. Lewis and D.W. Hughes. 1985. Determination by high-performance liquid chromatography of some compounds involved in the biosynthesis of penicillin and cephalosporin. Anal. Biochem. 149: 105–110.

    PubMed  Google Scholar 

  20. Usher, J.J., M.A. Lewis, D.W. Hughes and B.J. Compton. 1988. Development of the cephalosporin C fermentation taking into account the instability of cephalosporin C. Biotechnol. Lett. 10: 543–548.

    Google Scholar 

  21. Usher, J.J., M.A. Lewis and D.W. Hughes. 1990. Measurement of β-lactam biosynthetic enzymes inCephalosporium acremonium. Anal. Biochem., submitted for publication.

  22. Whitkop, C. and J. Tabor. 1986. Correlation of gene amplication and formation of secondary metabolites. Abstracts in Fungal Genetics Conference 1986.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Usher, J.J., Hughes, D.W., Lewis, M.A. et al. Determination of the rate-limiting step(s) in the biosynthetic pathways leading to penicillin and cephalosporin. Journal of Industrial Microbiology 10, 157–163 (1992). https://doi.org/10.1007/BF01569760

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01569760

Key words

Navigation