Skip to main content
Log in

Anaerobic biodegradation of methyl esters byAcetobacterium woodii andEubacterium limosum

  • Published:
Journal of Industrial Microbiology

Summary

The ability ofAcetobacterium woodii andEubacterium limosum to degrade methyl esters of acetate, propionate, butyrate, and isobutyrate was examined under growing and resting-cell conditions. Both bacteria hydrolyzed the esters to the corresponding carboxylates and methanol under either condition. Methanol was further oxidized to formate under growing but not resting conditions. Unlike the metabolism of phenylmethylethers, no H2 requirement was evident for ester biotransformation. The hydrolysis of methyl carboxylates is thermodynamically favorable under standard conditions and the mixotrophic metabolism of ester/CO2 allowed for bacterial growth. These results suggest that the degradation of methyl carboxylates may be a heretofore unrecognized nutritional option for acetogenic bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avedovech, R.M. Jr., M.R. McDaniel, B.T. Watson and W.E. Sandine. 1992. An evaluation of combinations of wine yeast andLeuconostoc oenos strains in malolactic fermentation of Chardonnay wine. Am. J. Enol. Viti. 43: 253–260.

    Google Scholar 

  2. Bache, R. and N. Pfennig. 1981. Selective isolation ofAcetobacterium woodii on methoxylated aromatic acids and determination of growth yields. Arch. Microbiol. 130: 255–261.

    Google Scholar 

  3. Browning, E. 1965. Toxicity and Metabolism of Industrial Solvents. Elsevier, New York.

    Google Scholar 

  4. Bunton, C.A. and T. Hadwick. 1957. Tracer studies in ester hydrolysis. V. The kinetic form and stereochemical course of the hydrolysis ofp-methoxydiphenylmethyl acetate. J. Chem. Soc. 3043–3047.

  5. Bunton, C.A. and T. Hadwick. 1958. Tracer studies in ester hydrolysis. VI. The hydrolysis of methyl trifluoroacetate. J. Chem. Soc. 3248–3256.

  6. Bunton, C.A., A.E. Comyns, J. Graham and J.R. Quayle. 1955. Preparation and hydrolysis of esters of 2,4,6-triphenylbenzoic acid. II. Mechanisms of hydrolysis. J. Chem. Soc. 3817–3824.

  7. Datta, S.C., J.N.E. Day and C.K. Ingold. 1939. Mechanism of hydrolysis of carboxylic esters and of esterification of carboxylic acids. Acid hydrolysis of an ester with heavy oxygen as isotopic indicator. J. Chem. Soc. 838–840.

  8. de Bruin, A. 1976. Biochemical Toxicology of Environmental Agents. Elsevier, New York.

    Google Scholar 

  9. DeWeerd, K.A., A. Saxena, D.P. Nagle, Jr and J.M. Suflita. 1988. Metabolism of the18O-methoxy substituent of 3-methoxybenzoic acid and other unlabeled methoxybenzoic acids by anaerobic bacteria. Appl. Environ. Microbiol. 54: 1237–1242.

    PubMed  Google Scholar 

  10. Diekert, G., E. Schrader and W. Harderet. 1986. Energetics of CO formation and CO oxidation in cell suspensions ofAcetobacterium woodii. Arch. Microbiol. 144: 386–392.

    Google Scholar 

  11. Doré J. and M.P. Bryant. 1990. Metabolism of one-carbon compounds by the ruminal acetogenSyntrophococcus sucromutans. Appl. Environ. Microbiol. 56: 984–989.

    Google Scholar 

  12. Euranto, E.K. 1969. Esterification and ester hydrolysis. In: The Chemistry of Carboxylic Acids and Esters (Patai, S., ed.), pp. 505–588, Interscience-Publishers, New York.

    Google Scholar 

  13. Forney, C.F., J.P. Mattheis and R.K. Austin. 1991. Volatile compounds produced by broccoli under anaerobic conditions. J. Agric. Food Chem. 39: 2257–2259.

    Google Scholar 

  14. Frazer, A.C. and L.Y. Young. 1986. Anaerobic C1 metabolism of the O-methyl-14C-labeled substituent of vanillate. Appl. Environ. Microbiol. 51: 84–87.

    Google Scholar 

  15. Inoue, T., T. Takeuchi, N. Hisanaga, Y. Ono, M. Iwata, M. Ogata, K. Saito, H. Sakurai, I. Hara, T. Matsushita and M. Ikeda. 1983. A nationwide survey on organic solvent components in various solvent products: Part 1. Homogeneous products such as thinners, degreasers and reagents. Ind. Health 21: 175–183.

    PubMed  Google Scholar 

  16. Kreft, J.-U. and B. Schink. 1993. Demethylation and degradation of phenylmethylethers by the sulfide-methylating homoacetogenic bacterium strain TMBS 4. Arch. Microbiol. 159: 308–315.

    Google Scholar 

  17. Kumai, M., A. Koizumi, K. Saito, H. Sakurai, T. Inoue, Y. Takeuchi, I. Hara, M. Ogata, T. Matsushita and M. Ikeda. 1983. A nationwide survey on organic solvent components in various solvent products: Part 2. Heterogeneous products such as paints, inks and adhesives. Ind. Health 21: 185–197.

    PubMed  Google Scholar 

  18. Leino, M., J. Kaitaranta and H. Kallio. 1992. Comparison of changes in headspace volatiles of some coffee blends during storage. Food Chem. 43: 35–40.

    Google Scholar 

  19. Liu, S. and J.M. Suflita. 1993. H2-CO2-dependent anaerobic O-demethylation activity in subsurface sediments and by an isolated bacterium. Appl. Environ. Microbiol. 59: 1325–1331.

    Google Scholar 

  20. Long F.A. and L. Friedman. 1950. Determination of the mechanism of γ-lactone hydrolysis by a mass spectrometric method. J. Am. Chem. Soc. 72: 3692–3695.

    Google Scholar 

  21. Martin, D.R., L.L. Lundie, R. Kellum and H.L. Drake. 1983. Carbon monoxide-dependent evolution of hydrogen by the homoacetate-fermenting bacteriumClostridium thermoaceticum. Curr. Microbiol. 8: 337–340.

    Google Scholar 

  22. Martin, D.R., A. Misra and H.L. Drake. 1985. Dissimilation of carbon monoxide to acetic acid by glucose-limited cultures ofClostridium thermoaceticum. Appl. Environ. Microbiol. 49: 1412–1417.

    Google Scholar 

  23. Mizunuma, K., T. Kawai, T. Yasugi, S.-I. Horiguchi, O. Iwami and M. Ikeda. 1992. In vitro hydrolysis of methyl acetate, a limitation in application of head-space gas chromatography in biological monitoring of exposure. Toxicol. Lett. 62: 247–253.

    PubMed  Google Scholar 

  24. Nelson, D.R. and C.L. Fatland. 1992. Novel esters on long-chain methyl-branched alcohols in pupae of the tobacco hornworm. Insect Biochem. Mol. Biol. 22: 99–110.

    Google Scholar 

  25. Ogawa, Y., R. Takatsuki, T. Uema, Y. Seki, K. Hiramatsu, A. Okayama, K. Morrimoto and Z. Kaneko. 1988. Acute optic neuropathy induced by thinner sniffing: inhalation of mixed organic solvent containing methyl alcohol and methyl acetate. Ind. Health 26: 239–244.

    PubMed  Google Scholar 

  26. Polanyi M. and A.L. Szabo. 1934. Mechanism of hydrolysis. Alkaline saponifications of amyl acetate. Trans. Faraday Soc. 30: 508–512.

    Google Scholar 

  27. Rakov D.Y., N.V. Doronina, Y.A. Trotsenko and R.M. Alieva. 1991. Growth of methylotrophic bacteria on methylacetate. Prikl. Biokhim. Mikrobiol. 27: 584–588.

    Google Scholar 

  28. Salinas, M.R., G. Alonso, G. Navarro and F. Pardo. 1990. Contribution to the study of the major aromatic components in the industrial processing of wine by carbonic maceration of Monastrell grapes: II. Ethyl acetate, isopentyl acetate, methyl acetate, ethyl formate and ethyl propionate. An. Bromatol. 42: 219–226.

    Google Scholar 

  29. Stupperich, E. and R. Konle. 1993. Corrinoid-dependent methyl transfer reactions are involved in methanol and 3,4-dimethoxybenzene metabolism bySporomusa ovata. Appl. Environ. Microbiol. 59: 3110–3116.

    Google Scholar 

  30. Suàrez, M. and C. Duque. 1991. Volatile constituents of Lulo (Solanum vestissimum D.) fruit. J. Agric. Food Chem. 39: 1498–1500.

    Google Scholar 

  31. Suflita, J.M. and M.R. Mormile. 1993. Anaerobic biodegradation of known and potential gasoline oxygenates in the terrestrial subsurface. Environ. Sci. Technol. 27: 976–978.

    Google Scholar 

  32. Tanaka, K. and N. Pfennig. 1988. Fermentation of 2-methoxyethanol byAcetobacterium malicum sp. nov. andpelobacter venetianus. Arch. Microbiol. 149: 181–187.

    Google Scholar 

  33. Thauer, R.K., K. Jungermann and K. Decker. 1977. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41: 100–180.

    PubMed  Google Scholar 

  34. Thermodynamics Research Center. 1986. TRC Thermodynamic Tables: Non-hydrocarbons. Thermodynamics Research Center, The Texas A&M University System, College Station, Texas.

    Google Scholar 

  35. Windholz, M. 1983. The Merck Index (10th edn), Merck & Co., Rahway, NJ.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, S., Suflita, J.M. Anaerobic biodegradation of methyl esters byAcetobacterium woodii andEubacterium limosum . Journal of Industrial Microbiology 13, 321–327 (1994). https://doi.org/10.1007/BF01569735

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01569735

Key words

Navigation