Skip to main content
Log in

Comparison of fatty acids of marine fungi using multivariate statistical analysis

  • Published:
Journal of Industrial Microbiology

Summary

Ten obligate marine fungi have as their principal fatty acids 16∶0, 18∶0, 18∶1n9 and 18∶2n6. The fatty acids ranged from 14 to 22 carbons, completely dominated by those with even numbers of carbons. The amount of unsaturated fatty acids varied between 35% and 80%. Each isolate contained small amounts of the acids 18∶3n3 and 20∶4n6. Branched, hydroxy- or cyclic fatty acids were not detected. Multivariate statistical, i.e. principal component analysis, showed that all ten strains could be distinguished on the basis of their fatty acid composition. These results indicate that the marine fungi do not have an unusual fatty acid composition and suggest that chemometric, multivariate analysis might be employed to confirm taxonomic relationships among these organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ackman, R.G. 1989. Fatty acids. In: Marine Biogenic Lipids, Fats and Oils (Ackman, R.G., ed.), Vol. 1, pp. 104–137, CRC Press, Boca Raton, FL.

    Google Scholar 

  2. Bajpai, P.K., P. Bajpai and O.P. Ward. 1992. Optimisation of culture conditions for production of eicosapentaenoic acid byMortierella elongata NRRL 5513. J. Indust. Microbiol. 9: 11–18.

    Google Scholar 

  3. Block, J.H., P. Catafalmo, G.H. Constantine, Jr and P.W. Kirk, Jr. 1973. Triglyceride fatty acids of selected higher marine fungi. Mycologia 65: 488–491.

    PubMed  Google Scholar 

  4. Cooney, J.J. and C.M. Proby. 1971. Fatty acid composition ofCladosporium resinae grown on glucose and on hydrocarbons. J. Bacteriol. 108: 777–781.

    PubMed  Google Scholar 

  5. Gandhi, S.R. and J.D. Weete. 1991. Production of the polyunsaturated fatty acids arachidonic and eicosapentaenoic acid by the fungusPythium ultimum. J. Gen. Microbiol. 137: 1825–1830.

    PubMed  Google Scholar 

  6. Jones, E.B.G. and P.J. Byrne. 1976. Physiology of the higher marine fungi. In: Recent Advances in Aquatic Mycology (Jones, E.B.G., ed.), pp. 135–175, Elek Science, London.

    Google Scholar 

  7. Jones, E.B.G. and G. Rees. 1984. Observations on the attachment of spores of marine fungi. Bot. Mar. 27: 145–160.

    Google Scholar 

  8. Kendrick, A.J. and C. Ratledge. 1992. Microbial polyunsaturated fatty acids of potential commercial interest. SIM Indust. Microbiol. News 42: 59–65.

    Google Scholar 

  9. Kirk, P.W., Jr. 1969. Isolation and culture of lignicolous marine fungi. Mycologia 61: 174–177.

    Google Scholar 

  10. Kirk, P.W., Jr. 1980. The mycostatic effect of seawater on spores of terrestrial and marine higher fungi. Bot. Mar. 23: 233–238.

    Google Scholar 

  11. Kirk, P.W., Jr. 1983. Direct enumeration of marine arenicolous fungi. Mycologia 75: 670–682.

    Google Scholar 

  12. Kirk, P.W. and A.S. Gordon. 1988. Hydrocarbon degradation by filamentous marine higher fungi. Mycologia 80: 776–782.

    Google Scholar 

  13. Kirk, P.W., B.J. Dyer and J. Noe. 1991. Hydrocarbon utilization by higher marine fungi from diverse habitats and localities. Mycologia 83: 227–230.

    Google Scholar 

  14. Kock, J.L.F. 1988. Chemotaxonomy and yeasts. S. African J. Science 84: 735–740.

    Google Scholar 

  15. Kohlmeyer, J. and E. Kohlmeyer. 1979. Marine Mycology, the Higher Fungi. Academic Press, New York, 690 pp.

    Google Scholar 

  16. Kohlmeyer, J. and B. Volkmann-Kohlmeyer. 1991. Illustrated key to the filamentous higher marine fungi. Bot. Mar. 34: 1–61.

    Google Scholar 

  17. Kvalheim, O.M. and T.V. Karstung. 1987. A general-purpose program for multivariate data analysis. Chemometrics Intell. Lab. System. 2: 235–237.

    Google Scholar 

  18. Lechevalier, H. and M.P. Lechevalier. 1988. Chemotaxonomic use of lipids — an overview. In: Microbial Lipids (Ratledge, C. and S. G. Wilkinson, eds), Vol. 1, pp. 869–902, Academic Press, New York.

    Google Scholar 

  19. Losel, D.M. 1988. Fungal lipids. In: Microbial Lipids (Ratledge, C. and S.G. Wilkinson, eds), Vol. 1, pp. 699–806, Academic Press, New York.

    Google Scholar 

  20. Miller, J.D. and N.J. Whitney. 1981. Fungi of the Bay of Fundy. III. Geofungi in the marine environment. Mar. Biol. 65: 61–68.

    Google Scholar 

  21. Ratledge, C. 1986. Lipids. In: Biotechnology, (Pape, H. and H.-J. Rehm, eds), Vol. 4, VCH Publishers, Deerfield Beach, FL.

    Google Scholar 

  22. Rees, G. 1980. Factors affecting the sedimentation rate of marine fungal spores. Bot. Mar. 23: 375–383.

    Google Scholar 

  23. Weete, J.D., M.S. Fuller, M.Q. Huang and S. Gandhi. 1989. Exper. Mycol. 13: 183–195.

    Google Scholar 

  24. Wold, S. and M. Sjostrom. 1977. SIMCA: a method for analyzing chemical data in terms of similarity and analogy. Amer. Chem. Soc. Symp. Series 52: 243–282.

    Google Scholar 

  25. Wold, S., C. Albano, W. Dunn et al. 1984. Multivariate data analysis in chemistry. In: Chemometrics: Mathematics and Statistics in Chemistry (Kowalski, B.R., ed.), pp. 17–95. Reidel, Dordrecht.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cooney, J.J., Doolittle, M.M., Grahl-Nielsen, O. et al. Comparison of fatty acids of marine fungi using multivariate statistical analysis. Journal of Industrial Microbiology 12, 373–378 (1993). https://doi.org/10.1007/BF01569668

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01569668

Key words

Navigation