Skip to main content
Log in

Copper retention by a strain ofBacillus

  • Original Papers
  • Published:
Journal of Industrial Microbiology

Summary

A survey has been made of the copper accumulation by resting cells of bacteria selected as copper-resistant, isolated from activated sludges. The best selected strain, classified asBacillus, retained copper at up to 3.8% of its cell dry weight. These values were lower in the presence of glucose, unlike a type culture ofBacillus cereus, in which the retention of copper was higher when glucose was present. Possible reasons for these changes in uptake of both strains are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albright, L.J., J.W. Wentworth and E.M. Wilson. 1972. Technique for measuring metallic salt effects upon the indigenous heterotrophic microflora of a natural water. Water Res. 6: 1589–1596.

    Google Scholar 

  2. Baldry, M.G.C. and A.C.R. Dean. 1980. Copper accumulation by bacteria, moulds and yeasts. Microbios 29: 7–14.

    Google Scholar 

  3. Baldry, M.C.G. and A.C.R. Dean. 1980. Copper accumulation byEscherichia coli strain FE 12/5. 2: Uptake by resting organisms. Microbios Lett. 15: 105–111.

    Google Scholar 

  4. Beveridge, T.J. and R.G.E. Murray. 1976. Uptake and retention of metals by cell walls ofBacillus subtilis. J. Bacteriol. 127: 1502–1518.

    PubMed  Google Scholar 

  5. Beveridge, T.J. and R.G.E. Murray. 1980. Sites of metal deposition in the cell wall ofBacillus subtilis. J. Bacteriol. 141: 876–887.

    PubMed  Google Scholar 

  6. Brignac, P.J. and C. Mo. 1975. Formation constants and metal-to-ligand ratios for tris(hydroxymethyl)aminomethane-metal complexes. Anal. Chem. 47: 1465–1466.

    Google Scholar 

  7. Bucheder, F. and E. Broda. 1974. Energy-dependent zinc transport byEscherichia coli. Eur. J. Biochem. 45: 555–559.

    PubMed  Google Scholar 

  8. Casey, J.D. and Y.C. Wu. 1977. Removal of copper and cadmium by metabolically controlled activated sludge. In: Proceedings of the 32nd Industrial Waste Conference, Purdue University, pp. 141–152, Purdue University Press, West Lafayette, IN.

    Google Scholar 

  9. Cassity, T.R. and B.J. Kolodziej. 1984. Role of the capsule produced byBacillus megaterium ATCC 19213 in the accumulation of metallic cations. Microbios 40: 117–125.

    Google Scholar 

  10. Farrah, S.R. and G. Bitton. 1984. Enteric bacteria in aerobically digested sludge. Appl. Environ. Microbiol. 47: 831–834.

    PubMed  Google Scholar 

  11. Ferris, F.G. and T.J. Beveridge. 1986. Site specificity of metallic ion binding inEscherichia coli K-12 lipopolysaccharide. Can. J. Microbiol. 32: 52–55.

    PubMed  Google Scholar 

  12. Holt, J.G. (Ed.) 1976. Bergey's Manual of Determinative-Bacteriology 8th Edn., Williams & Wilkins Co., Baltimore.

    Google Scholar 

  13. Kelly, D.P., P.R. Norris and C.L. Brierley. 1979. Microbiological Methods for the Extraction and Recovery of Metals. In: Microbial Technology: Current State, Future Prospects (Bull, A.T., ed.), Vol. 29, pp. 263–308, Cambridge University Press.

  14. Khovrychev, M.P. 1973. Absorption of copper by the cells ofCandida utilis. Microbiology 42: 745–749.

    PubMed  Google Scholar 

  15. Krueger, W.B. and B.J. Kolodziej. 1976. Measurement of cellular copper levels inBacillus megaterium during exponential growth and sporulation. Microbios 17: 141–147.

    PubMed  Google Scholar 

  16. McPhail, D.B. and B.A. Goodman. 1984. Tris buffer: a case for caution in its use in copper-containing systems. Biochem. J. Let. 221: 559–560.

    Google Scholar 

  17. Norberg, A.B. and H. Persson. 1984. Accumulation of heavy metal ions byZoogloea ramigera. Biotechnol. Bioeng. 26: 239–246.

    Google Scholar 

  18. Norris, P.R. and D.P. Kelly. 1977. Accumulation of cadmium and cobalt bySaccharomyces cerevisiae. J. Gen. Microbiol. 99: 317–324.

    Google Scholar 

  19. Ochiai, E.I. 1977. Bioinorganic Chemistry, Allyn and Bacon, London.

    Google Scholar 

  20. Patrick, F.M. and M.W. Loutit. 1976. Passage of metals in effluents, through bacteria to higher organisms. Water Res. 10: 333–335.

    Google Scholar 

  21. Ramamoorthy, S. and D.J. Kushner. 1975. Binding of mercuric and other metal ions by microbial growth media. Microb. Ecol. 2: 162–176.

    Google Scholar 

  22. Ross, I.S. 1977. Effect of glucose on copper uptake and toxicity inSaccharomyces cerevisiae. Trans. Br. Mycol. Soc. 69: 77–81.

    Google Scholar 

  23. Silver, S., P. Johnseine, E. Whitney and D. Clark. 1972. Manganese-resistant mutants ofEscherichia coli: physiological and genetic studies. J. Bacteriol. 110: 186–195.

    PubMed  Google Scholar 

  24. Silverberg, B.A., P.M. Stokes and L.B. Ferstenberg. 1976. Intranuclear complexes in a copper-tolerant green alga. J. Cell Biol. 69: 210–214.

    PubMed  Google Scholar 

  25. Skerman, V.B.D. 1969. Abstracts of Microbiological Methods. Wiley-Interscience, New York.

    Google Scholar 

  26. Tabillion, R. and H. Kaltwasser. 1977. Energieabhängige63Ni-Aufnahme beiAlcaligenes eutrophus Stamm H1 und H16. Arch. Microbiol. 113: 145–151.

    PubMed  Google Scholar 

  27. Tinecka, Z., J. Zajac and Z. Gos. 1975. Plasmid-dependent impermeability barrier to cadmium ions inStaphylococcus aureus. Acta Microbiol. Pol. Ser. A 7: 11–20.

    Google Scholar 

  28. Webb, M. 1970. Interrelationships between the utilization of magnesium and the uptake of other bivalent cations by bacteria. Biochim. Biophys. Acta 222: 428–439.

    PubMed  Google Scholar 

  29. Willecke, K., E.-M. Gries and P. Oehr. 1973. Coupled transport of citrate and magnesium inBacillus subtilis. J. Biol. Chem. 248: 807–814.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solanellas, F., Bordons, A. Copper retention by a strain ofBacillus . Journal of Industrial Microbiology 3, 205–209 (1988). https://doi.org/10.1007/BF01569578

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01569578

Key words

Navigation