Skip to main content
Log in

Biosynthesis of acyclic methyl branched polyunsaturated hydrocarbons inPseudomonas maltophilia

  • Original Papers
  • Published:
Journal of Industrial Microbiology

Summary

The hydrocarbon composition ofPseudomonas maltophilia was determined by gas chromatography-mass spectrometry. Mono-, di- and tri-unsaturated alkenes were identified with a predominance of polyunsaturated components. The carbon chains of the alkenes contained single methyl branches iniso andanteiso position and double methyl branches in theiso-iso andanteiso-anteiso configurations. The composition of the hydrocarbons from cells grown in synthetic media enriched with amino acids or volatile fatty acids demonstrated that the probable precursors incorporated into individual hydrocarbons were branched and normal fatty acid chains in the range from C3 to C16. The probable fatty acid precursors which were connected together to form the major triunsaturated hydrocarbon chains were two monounsaturated chains, whereas the major liunsaturated chains resulted from condensation of saturated and monounsaturated chains. The probable precursors for the major monounsaturated hydrocarbons were C14 (C15) and C16 (C15) fatty acids. The accumulation of hydrocarbons was not detected until the cells were in the late exponential phase of growth; the maximal levels were reached at the mid-stationary phase of growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albro, P.W. 1971. Confirmation of the identification of the major C-29 hydrocarbon ofSarcina lutea. J. Bacteriol. 108: 213–218.

    PubMed  Google Scholar 

  2. Albro, P.W. and J.C. Dittmer. 1970. Bacterial hydrocarbons: occurrence, structure and metabolism. Lipids 5: 320–325.

    PubMed  Google Scholar 

  3. Albro, P.W., T.D. Meehan and J.C. Dittmer. 1970. Intermediate steps in the incorporation of fatty acids into long-chain, nonisoprenoid hydrocarbons by lysates ofSarcina lutea. Biochemistry 9: 1893–1898.

    PubMed  Google Scholar 

  4. Arima, K., K. Komagata, S. Sugiyama and M. Kazama. 1954. Metabolism of aromatic compounds by microbes. II. Taxonomical studies on aromatic compound-utilizing bacteria. Nippon Nogei Kagaku Kaishi 28: 635–642.

    Google Scholar 

  5. Beiss, U. 1964. Zur Papierchromatographischen Auftrennung von Pflanzenlipiden. J. Chromatogr. 13: 104–110.

    PubMed  Google Scholar 

  6. Blanchardie, P. and C. Cassagne. 1976. Biosyntheses des acides gras à tres longue chaine et des alcanes chezSaccharomyces cerevisiae. C.R. Acad. Sci. Paris Ser. D 282: 227–230.

    Google Scholar 

  7. Bligh, E.G. and W.J. Dyer. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911–917.

    PubMed  Google Scholar 

  8. Blumer, M., R.R.L. Guillard and T. Chase. 1971. Hydrocarbons of marine phytoplankton. Mar. Biol. 8: 183–189.

    Google Scholar 

  9. Blumer, M., M.M. Mullin and R.R.L. Guillard. 1970. A polyunsaturated hydrocarbon (3, 6, 9, 12, 15, 18-heneicosahexaene) in the marine food web. Mar. Biol. 6: 226–235.

    Google Scholar 

  10. Blumer, M. and D.W. Thomas. 1965. ‘Zamene’ Isomeric C19 Monoolefins from marine zooplankton, fishes, and mammals. Science 148: 370–371.

    Google Scholar 

  11. Debette, J. and R. Blondeau. 1977. Charactérisation de bactéries telluriques assimilables àPseudomonas maltophilia. Can. J. Microbiol. 23: 1123–1127.

    PubMed  Google Scholar 

  12. Debette, J., J. Losfeld and R. Blondeau. 1975. Taxonomie numérique de bactéries telluriques non fermentantes à Gram-négatif. Can. J. Microbiol. 21: 1322–1334.

    PubMed  Google Scholar 

  13. Evans, R.W., M. Kates, M. Ginzburg and B.Z. Ginzburg. 1982. Lipid composition of halotolerant algae,Dunaliella parava andDunaliella tertiolecta. Biochim. Biophys. Acta 712: 186–195.

    Google Scholar 

  14. Fehler, S.W.G. and R.J. Light. 1970. Biosynthesis of methylheptadecanes inAnabena variables. In vitro incorporation ofS-[methyl-14C] adenosylmethionine. Biochemistry 11: 2411–2416.

    Google Scholar 

  15. Hajibrahim, S.K., P.J.C. Tibbitts, C.D. Watts, J.R. Maxwell, G. Eglinton, H. Colin and G. Guiochon. 1978. Analysis of carotenoid and porphyrin pigments of geochemical interest by high performance liquid chromatography. Anal. Chem. 50: 549–553.

    Google Scholar 

  16. Han, J. and M. Calvin. 1969. Hydrocarbon distribution of algae and bacteria and microbiological activity in sediments. Proc. Natl. Acad. Sci. USA 64: 436–443.

    PubMed  Google Scholar 

  17. Heringa, J.W., R. Huybregtse and A.C. van der Linden. 1961.n-Alkane oxidation byPseudomonas. Formation and β-oxidation of intermediate fatty acids. Antonie Van Leeuwenhoek J. Microbiol. Serol. 27: 51–58.

    Google Scholar 

  18. Hugh, R. and G.L. Gilardi. 1980.Pseudomonas. In: Manual of Clinical Microbiology, 3rd Edn. (Lennette, E.H., A. Balows, W.J. Hausler and J.P. Truant, eds.), pp. 288–317, American Society for Microbiology, Washington, DC.

    Google Scholar 

  19. Iisuka, H. and K. Komagata. 1964. Microbiological studies on petroleum and natural gas. I. Determination of hydrocarbon-utilizing bacteria. J. Gen. Appl. Microbiol. 10: 207–221.

    Google Scholar 

  20. Ikemoto, S., K. Katoh and K. Komagata. 1978. Cellular fatty acid composition in methanol-utilizing bacteria. J. Gen. Appl. Microbiol. 24: 41–49.

    Google Scholar 

  21. Ikemoto, S., K. Suzuki, T. Kaneko and K. Komagata. 1980. Characterization of strains ofPseudomonas maltophilia which do not require methionine. Int. J. Syst. Bacteriol. 30: 437–477.

    Google Scholar 

  22. Kates, M. 1964. Simplified procedures for hydrolysis or methanolysis of lipids. J. Lipid Res. 5: 132–135.

    Google Scholar 

  23. Katob, K. and T. Suzuki. 1979. Microflora of manured soils. Bull. Natl. Inst. Agric. Sci. Ser. B 30: 73–135.

    Google Scholar 

  24. Kloos, W.E., T.G. Tornabene and K.H. Schleifer. 1974. Isolation and characterization of micrococci from human skin, including two new species:Micrococcus lylae andMicrococcus kristinae. Int. J. Syst. Bacteriol. 24: 79–101.

    Google Scholar 

  25. Kochert, G. 1978. Carbohydrate determination by the phenol-sulfuric acid method. In: Handbook of Phycological Methods: Physiological and Biochemical Methods (Hellebust, J.A. and J.S. Craigie, eds.), pp. 95–97, Cambridge University Press, London.

    Google Scholar 

  26. Kolattukudy, P.E. 1976. Chemistry of Natural Waxes 419 pp. Elsevier, Amsterdam.

    Google Scholar 

  27. Lee, R.F. and A.R. Loeblich. 1971. Distribution of 21:6 hydrocarbons and its relationship to 22:6 fatty acid in algae. Phytochemistry 10: 593–602.

    Google Scholar 

  28. Lowry, O.H., N.J. Rosebrough, A.L. Farr and R.J. Randall. 1951. Protein measurement with Folin phenol reagent. J. Biol. Chem. 193: 265–275.

    PubMed  Google Scholar 

  29. Mackenzie, A.S., S.C. Brassell, E. Eglington and Y.R. Maxwell. 1982. Chemical fossils: the geological fate of steroids. Science 217: 491–504.

    Google Scholar 

  30. McInnes, A.G., J.A. Walter and J.L.C. Wright. 1980. Biosynthesis of hydrocarbons by algae: Decarboxylation of stearic acid ton-heptadecane inAnacystis nidulans determined by13C and2H-labeling and13C nuclear magnetic resonance. Lipids 15: 609–615.

    Google Scholar 

  31. Morrison, S.J., T.G. Tornabene and W.E. Kloos. 1971. Neutral lipids in the study of relationships of members of the family Micrococeaceae. J. Bacteriol. 108: 353–358.

    PubMed  Google Scholar 

  32. Nes, W.R. and W.D. Nes. 1980. Lipids in Evolution. Plenum Press, New York.

    Google Scholar 

  33. Oro, J., D.W. Nooner, A. Zlatkis, S.A. Wilkstrom and E.S. Barghoorn. 1965. Hydrocarbons of biological origin in sediments about two billion years old. Science 148: 77–79.

    Google Scholar 

  34. Oro, J., T.G. Tornabene, D.W. Nooner and E. Gelpi. 1967. Aliphatic hydrocarbons and fatty acids of some marine and freshwater microorganisms. J. Bacteriol. 93: 1811–1818.

    PubMed  Google Scholar 

  35. Ourisson, G., P. Albrecht and M. Rohmer. 1979. The hopanoids, palaeochemistry and biochemistry of a group of natural products. Pure Appl. Chem. 51: 709–729.

    Google Scholar 

  36. Siakotos, A.N. and G. Rouser. 1965. Analytical separation of nonlipid water soluble substances and gangliosides from other lipids by dextran gel column chromatography. J. Am. Oil Chem. Soc. 42: 913–919.

    PubMed  Google Scholar 

  37. Swings, J., P. de Vos, M. van den Mooter and J. de Ley. 1983. Transfer ofPseudomonas maltophilia to the genusXanthomonas asXanthomonas maltophilia (Hugh 1981) comb. Int. J. Syst. Bacteriol. 33: 409–413.

    Google Scholar 

  38. Tissot, B.P. and D.H. Welte. 1978. Petroleum Formation and Occurrence. Springer-Verlag, Berlin, Heidelberg and New York.

    Google Scholar 

  39. Tornabene, T.G. 1981. Formation of hydrocarbons by bacteria and algae. In: Trends in the Biology of Fermentation for Fuels and Chemicals (Hollaender, A., Rabson, R., Rogers, P., Pietro, S., Valentine, R. and Wolfe, R., eds.), pp. 421–438, Plenum Publishing Corporation, New York.

    Google Scholar 

  40. Tornabene, T.G. 1985. Lipid analysis and the relationship to chemotaxonomy. Methods Microbiol. 18: 209–234.

    Google Scholar 

  41. Tornabene, T.G., E. Gelpi and J. Oro. 1967. Identification of fatty acids and aliphatic hydrocarbons inSarcina lutea by gas chromatography and combined gas chromatographymass spectrometry. J. Bacteriol. 94: 333–343.

    PubMed  Google Scholar 

  42. Tornabene, T.G. and S.P. Markey. 1971. Characterization of branched monounsaturated hydrocarbons ofSarcina lutea andSarcina flava. Lipids 6: 190–195.

    PubMed  Google Scholar 

  43. Tornabene, T.G., S.J. Morrison and W.E. Kloos. 1970. Aliphatic hydrocarbon contents of various members of the family Micrococcaceae. Lipids 5: 929–937.

    PubMed  Google Scholar 

  44. Tornabene, T.G. and J. Oro. 1967.14C incorporation into fatty acids and aliphatic hydrocarbons ofSarcina lutea. J. Bacteriol. 94: 349–358.

    PubMed  Google Scholar 

  45. Tornabene, T.G. and S.L. Peterson. 1978.Pseudomonas maltophilia: Identification of the hydrocarbons, glycerides, and glycolipoproteins of cellular lipids. Can. J. Microbiol. 24: 525–532.

    PubMed  Google Scholar 

  46. Tornabene, T.G., S. Wu-Hunter and P.S. Eastman. 1983. Production of aliphatic hydrocarbons by microorganisms isolated from shale. In: Chemical and Geochemical Aspects of Fossil Energy Extraction (Yen, T.F., F.K. Kawahara and R.H. Hertzberg, eds.), pp. 169–181, Ann Arbor Science Publishers, Ann Arbor, Michigan.

    Google Scholar 

  47. Vaskovsky, V.E. and V.I. Svetashev. 1972. Phospholipid spray reagent. J. Chromatogr. 65: 451–453.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suen, Y., Holzer, G.U., Hubbard, J.S. et al. Biosynthesis of acyclic methyl branched polyunsaturated hydrocarbons inPseudomonas maltophilia . Journal of Industrial Microbiology 2, 337–348 (1988). https://doi.org/10.1007/BF01569572

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01569572

Key words

Navigation