Journal of Muscle Research & Cell Motility

, Volume 8, Issue 4, pp 322–328 | Cite as

The effects of quinine on the calcium and magnesium content of the sarcoplasmic reticulum and the temperature-dependence of quinine contractures

  • Toshitada Yoshioka
  • Andrew P. Somlyo
Article

Summary

A significant decrease in the Ca2+ and increase in the Mg2+ content of the terminal cisternae (TC) of the sarcoplasmic reticulum (SR) during quinine contraction was demonstrated by electron probe analysis of rapidly frozen frog muscles. The extent of Ca2+ release (71% of total) from the TC and the absence of an increase in total cell Ca2+ support the conclusion that quinine contractures are caused by passive efflux of Ca2+ from the SR when the latter is uncompensated due to inhibition of the SR Ca2+ pump by quinine. A rapid warming contraction (RWC) was observed, in the presence of quinine, when the temperature of intact and skinned muscles was increased from about 5° C to 18–23° C. The duration of the latency of quinine contracture, in intact muscle bundles, was approximately 31 s at 3° C and 2 s at 23° C. The results suggest a significant temperature sensitivity of the passive Ca2+ channels of the SR membrane, although an effect of temperature on the lipid partition coefficient of quinine into the SR has not been ruled out.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersson, K. E. (1972) Effects of chlorpromazine, imipramine, and quinidine on the mechanical activity of single skeletal muscle fibres of the frog.Acta Physiol. Scand 85, 532–46.PubMedGoogle Scholar
  2. Balzer, H. (1972) The effect of quinidine and drugs with quinidine-like action (propanolol, verapamil and tetracaine) on the calcium transport system in isolated sarcoplasmic reticulum vesicles of rabbit skeletal muscle.Naunyn-Schmiedebergs Archs. Pharmacol. 274, 256–72.Google Scholar
  3. Carvalho, A. P. (1968) Calcium-binding properties of sarcoplasmic reticulum as influenced by ATP, caffeine, quinine, and local anaesthetics.J. gen. Physiol. 52, 622–42.PubMedGoogle Scholar
  4. Chamberlain, B. K., Volpe, P. &Fleischer, S. (1984) Inhibition of calcium-induced calcium release from purified cardiac sarcoplasmic reticulum vesicles.J. biol. Chem. 259, 7547–53.PubMedGoogle Scholar
  5. Eletr, S. &Inesi, G. (1972) Phase changes in the lipid moieties of sarcoplasmic reticulum membranes induced by temperature and protein conformational changes.Biochim. biophys. Acta 290, 178–85.PubMedGoogle Scholar
  6. Endo, M. (1975) Mechanism of action of caffeine on the sarcoplasmic reticulum of skeletal muscle.Proc. Jpn. Acad. 51, 479–84.Google Scholar
  7. Endo, M. &Nakajima, Y. (1973) Release of calcium induced by ‘depolarisation’ of the sarcoplasmic reticulum membrane.Nature (Lond.) New Biol. 246, 216–18.Google Scholar
  8. Feher, J. J. &Briggs, F. N. (1982) The effect of calcium load on the calcium permeability of sarcoplasmic reticulum.J. biol. Chem. 257, 10191–99.PubMedGoogle Scholar
  9. Franciolini, F. (1984) Effects of quinine on the isometric tension and intracellular calcium movements in single giant muscle fibres.Acta Physiol. Hung. 63, 147–51.PubMedGoogle Scholar
  10. Fuchs, F., Gertz, E. W. &Briggs, F. N. (1968) The effect of quinidine on calcium accumulation by isolated sarcoplasmic reticulum of skeletal and cardiac muscle.J. gen. Physiol. 52, 955–68.PubMedGoogle Scholar
  11. Fuchs, F., Hartshorne, D. J. &Barns, E. M. (1974) ATPase activity and superprecipitation of skeletal muscle actomyosin of frog and rabbit: Effect of temperature on calcium sensitivity.Comp. Biochem. Physiol. 51B, 165–70.Google Scholar
  12. Garcia, A. M. &Miller, C. (1984) Channel-mediated monovalent cation fluxes in isolated sarcoplasmic reticulum vesicles.J. gen. Physiol. 83, 819–939.PubMedGoogle Scholar
  13. Gattass, C. R. &De Meis, L. (1978) The mechanism by which quinine inhibits the Ca2+ transport of sarcoplasmic reticulum.Biochem. Pharmacol. 27, 539–45.PubMedGoogle Scholar
  14. Hall, T. A. (1971) The microprobe assay of chemical elements. InPhysical Techniques in Biological Research (edited byOster, G.), Vol. 1A, pp. 158–275. New York: Academic Press.Google Scholar
  15. Hasselbach, W. &Oetliker, H. (1983) Energetics and electrogenecity of the sarcoplasmic reticulum calcium pump.Ann. Rev. Physiol. 45, 325–39.Google Scholar
  16. Isaacson, A. &Sandow, A. (1967) Quinine and caffeine effects on45Ca movements in frog sartorius muscle.J. gen. Physiol. 50, 2109–28.PubMedGoogle Scholar
  17. Katz, A. M., Repke, D. I., Dunnett, J. &Hasselbach, W. (1977) Dependence of calcium permeability of sarcoplasmic reticulum vesicles on external and internal calcium ion concentrations.J. biol. Chem. 252, 1950–6.PubMedGoogle Scholar
  18. Kitazawa, T. &Endo, M. (1976) Increase in passive calcium influx into the sarcoplasmic reticulum by ‘depolarization’ and caffeine.Proc. Jpn. Acad. 52, 599–602.Google Scholar
  19. Kitazawa, T., Shuman, H. &Somlyo, A. P. (1982) Calcium and magnesium binding to thin and thick filaments in skinned muscle fibres: Electron probe analysis.J. Musc. Res. Cell Motility 3, 437–54.Google Scholar
  20. Kitazawa, T., Shuman, H. &Somlyo, A. P. (1983) Quantitative electron probe analysis: Problems and solutions.Ultramicroscopy 11, 251–62.Google Scholar
  21. Kitazawa, T., Somlyo, A. P. &Somlyo, A. V. (1984) The effects of valinomycin on ion movements across the sarcoplasmic reticulum in frog muscle.J. Physiol. (London) 350, 253–68.Google Scholar
  22. Martonosi, A. &Beeler, T. J. (1983) Mechanism of Ca2+ transport by sarcoplasmic reticulum. InHandbook of Physiology: Skeletal Muscle (edited byPeachey, L. D., Adrian, R. H. andGeiger, S. R.), pp. 417–86. Bethesda, MD: American Physiological Society.Google Scholar
  23. Meissner, G. (1983) Monovalent ion and calcium ion fluxes in sarcoplasmic reticulum.Molec. cell. Biochem. 55, 65–82.PubMedGoogle Scholar
  24. Nagasaki, K. &Kasai, M. (1984) Channel selectivity and gating specificity of calcium-induced calcium release channel in isolated sarcoplasmic reticulum.J. Biochem. (Tokyo) 96, 1769–75.Google Scholar
  25. Ogawa, Y. (1970) Some properties of frog fragmented sarcoplasmic reticulum with particular reference to its response to caffeine.J. Biochem. (Tokyo) 67, 667–83.Google Scholar
  26. Palade, P., Mitchell, R. D. &Fleischer, S. (1983) Spontaneous calcium release from sarcoplasmic reticulum: general description and effects of calcium.J. biol. Chem. 258, 8098–107.PubMedGoogle Scholar
  27. Pang, D. C. &Briggs, F. N. (1976) Mechanism of quinidine and chlorpromazine inhibition of sarcotubular ATPase activity.Biochem. Pharmacol. 25, 21–5.PubMedGoogle Scholar
  28. Sakai, T., Geffner, E. S. &Sandow, A. (1971) Caffeine contracture in muscle with disrupted transverse tubules.Amer. J. Physiol. 220, 712–19.PubMedGoogle Scholar
  29. Salama, G. &Scarpa, A. (1985) Magnesium permeability of sarcoplasmic reticulum.J. biol. Chem. 260, 11697–705.PubMedGoogle Scholar
  30. Shuman, H., Somlyo, A. V. &Somlyo, A. P. (1976) Quantitative electron probe microanalysis of biological thin sections: Methods and validity.Ultramicroscopy 1, 317–39.PubMedGoogle Scholar
  31. Somlyo, A. P., Somlyo, A. V. &Shuman, H. (1979) Electron probe analysis of vascular smooth muscle: Composition of mitochondria, nuclei and cytoplasm.J. Cell Biol. 81, 316–35.PubMedGoogle Scholar
  32. Somlyo, A. V., Gonzalez-Serratos, H., Shuman, H., McClellan, G. &Somlyo, A. P. (1981) Calcium release and ionic changes in the sarcoplasmic reticulum of tetanized muscle: An electron probe study.J. Cell Biol. 90, 577–94.PubMedGoogle Scholar
  33. Somlyo, A. V., Kitazawa, T., Gonzalez-Serratos, H., McClellan, G. &Somlyo, A. P. (1985a) Ion movements associated with Ca release and uptake in the sarcoplasmic reticulum. InCalcium in Biological Systems (edited byRubin, R. P., Weiss, G. andPutney, J. W., Jr.), pp. 351–8. New York: Plenum Press.Google Scholar
  34. Somlyo, A. V., McClellan, G., Gonzalez-Serratos, H., McClellan, G. &Somlyo, A. P. (1985b) Electron probe X-ray microanalysis of post-tetanic Ca and Mg movements across the sarcoplasmic reticulumin situ.J. biol. Chem. 260, 6801–7.PubMedGoogle Scholar
  35. Somlyo, A. V., Shuman, H. &Somlyo, A. P. (1977) Elemental distributions in striated muscle and effects of hypertonicity: Electron probe analysis of cryo sections.J. Cell Biol. 74, 828–57.PubMedGoogle Scholar
  36. Suarez-Kurtz, G., DaCosta, M. J. B. &Coutinho, S. (1980) Effects of high potassium concentrations and of chloride substitution on the guinine-induced contractures of frog skeletal muscle.J. pharmacol. exp. Therap. 214, 171–8.Google Scholar
  37. Uyeki, E. M., Geiling, E. M. K. & DuBois, K. P. (1954) Studies of the effects of quinidine on intermediary carbohydrate metabolism.Archs. Int. Pharmacodyn. 97, 191–205.Google Scholar
  38. Volpe, P., Palade, P., Costello, B., Mitchell, R. E. &Fleischer, S. (1983) Spontaneous calcium release from sarcoplasmic reticulum: Effect of local anesthetics.J. biol. Chem. 258, 12434–42.PubMedGoogle Scholar
  39. Weber, A. (1968) The mechanism of action of caffeine in sarcoplasmic reticulum.J. gen. Physiol. 52, 760–72.PubMedGoogle Scholar
  40. Worsfold, M. &Peter, J. B. (1970) Kinetics of calcium transport by fragmented sarcoplasmic reticulum.J. biol. Chem. 245, 5545–52.PubMedGoogle Scholar
  41. Yoshioka, T., Narusawa, M., Nakano, S. &Somlyo, A. P. (1984) Changes in Ca and Mg during quinine contracture in the sarcoplasmic reticulum (SR) of frog muscle. InProceedings of Third International Congress on Cell Biology, p. 514a, Tokyo.Google Scholar
  42. Yoshioka, T. &Somlyo, A. P. (1984) The calcium and magnesium contents and volume of the terminal cisternae in caffeine-treated skeletal muscle.J. Cell Biol. 99, 558–68.PubMedGoogle Scholar

Copyright information

© Chapman and Hall Ltd. 1987

Authors and Affiliations

  • Toshitada Yoshioka
    • 1
  • Andrew P. Somlyo
    • 2
  1. 1.Department of PhysiologyTokai University School of MedicineKanagawaJapan
  2. 2.Pennsylvania Muscle InstituteUniversity of Pennsylvania School of MedicinePhiladelphiaUSA

Personalised recommendations