Skip to main content
Log in

The cytochromes of luminous bacteria and their coupling to bioluminescence

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Vibrio fischeri andV. harveyi possess cytochromes a, b, and c, whereasPhotobacterium leiognathi andP. phosphoreum also contain cytochrome d. In all, cytochrome a as well as some of c binds carbon monoxide. Carbon monoxide does not inhibit bioluminescence (in vivo or in vitro), but carbonyl cyanidem-chlorophenylhydrazone inhibits only in vivo bioluminescence. This inhibition is due to dissipation of the proton motive force which indirectly inhibits bioluminescence by interruption of aldehyde recycling. Bioluminescence is thereby indirectly coupled to the proton motive force.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Antonini E, Brunori M (1971) Bacterial proteins with CO binding b- or c-type haem functions and absorption spectroscopy. Biochim Biophys Acta 768:293–320

    Google Scholar 

  2. Barnes EM Jr, Kaback HR (1973) Mechanisms of active transport in isolated membrane vesicles. I. The site of energy coupling betweend-lactic dehydrogenase and B-galactoside transport inE. coli membrane vesicles. J Biol Chem 246:5518–5522

    Google Scholar 

  3. Danilov VS, Malkov YA, Yegorow NS (1985) The effect of CO on the activity of bacterial luciferase. Stud Biophys 105:157–165

    Google Scholar 

  4. Eymers OG, van Shouwnburg KL (1936) On the luminescence of bacteria. II. Determination of the oxygen consumed in the light emitting process ofPhotobacterium phosphoreum. Enzymologia 1:238–340

    Google Scholar 

  5. Grogan DW (1984) Interaction of respiration and luminescence in a common marine bacterium. Arch Microbiol 137:159–162

    Google Scholar 

  6. Harold FM (1972) Conservation and transformation of energy by bacterial membranes. Bacteriol Rev 36:172–230

    PubMed  Google Scholar 

  7. Hastings JW (1983) Biological diversity, chemical mechanisms and the evolutionary origins of bioluminescent systems. J Mol Evol 19:309–321

    PubMed  Google Scholar 

  8. Hastings JW, Nealson KH (1977) Bacterial bioluminescence. Annu Rev Microbiol 31:549–595

    PubMed  Google Scholar 

  9. Hastings JW, Nealson KH (1981) The symbiotic luminous bacteria. In: Starr MP, Stalp H, Trupper H, Balows A, Schlegel H (eds) The prokaryotes. A handbook on habitats, isolation and identification of bacteria. Berlin-Heidelberg: Springer Verlag, pp 1332–1345

    Google Scholar 

  10. Hastings JW, Weber G (1963) Total quantum flux of isotropic sources. J Opt Soc Am 53:1410–1415

    Google Scholar 

  11. Hastings JW, Baldwin TO, Nicoli MZ (1978) Bacterial luciferase: assay, purification and properties. Methods Enzymol 57:135–144

    Google Scholar 

  12. Heytter PG (1979) Uncouplers of oxidative phosphorylation. Methods Enzymol 55:462–472

    PubMed  Google Scholar 

  13. Kamen MD, Torio T (1970) Bacterial cytochromes. I. Structural aspects. Annu Rev Biochem 39:673–700

    PubMed  Google Scholar 

  14. Konishi K, Ouchi M, Kita K, Horikoshi I (1986) Purification of a cytochrome b560-d complex, a terminal oxidase of the aerobic respiratory chain ofPhotobacterium phosphoreum. J Biochem 99:1227–1236

    PubMed  Google Scholar 

  15. Lombardi FJ, Reeves JP, Kaback HR (1973) Mechanisms of active transport in isolated bacterial membrane vesicles. VII. Valinomycin induced Rb transport. J Biol Chem 248:3551–3565

    PubMed  Google Scholar 

  16. Makemson JC (1986) Luciferase-dependent oxygen consumption by bioluminescent vibrios. J Bacteriol 165:461–466

    PubMed  Google Scholar 

  17. Makemson JC, Hastings JW (1979) Poising of the arginine pool and control of bioluminescence inBeneckea harveyi. J Bacteriol 140:532–542

    PubMed  Google Scholar 

  18. Makemson JC, Hastings JW (1982) Iron represses bioluminescence inVibrio harveyi. Curr Microbiol 7:181–186

    Google Scholar 

  19. Makemson JC, Hastings JW (1986) Luciferase dependent growth of cytochrome-deficientVibrio harveyi. FEMS Microbiol Lett 38:79–85

    Google Scholar 

  20. Matsuyama T (1984) Staining of living bacteria with rhodamine 123. FEMS Microbiol Lett 21:153–157

    Google Scholar 

  21. Mitchell GW, Hastings JW (1971) A stable, inexpensive solid state photomultiplier-photometer. Anal Biochem 39:243–250

    PubMed  Google Scholar 

  22. Poole RK (1983) Bacterial cytochrome oxidases. A structurally and functionally diverse group of electron transfer proteins. Biochim Biophys Acta 726:205–243

    PubMed  Google Scholar 

  23. Reichelt JL, Baumann P (1973) Taxonomy of the marine luminous bacteria. Arch Mikrobiol 94:283–330

    Google Scholar 

  24. Resnick M, Schuldiner S, Bercovier H (1985) Bacterial membrane potential analyzed by spectrofluorocytometry. Curr Microbiol 12:183–186

    Google Scholar 

  25. Smith L (1970) Bacterial cytochromes and their spectra characteristics. Methods Enzymol 53:202–212

    Google Scholar 

  26. Watanabe H, Minura N, Takimoto A, Nakamura T (1975) Luminescence and respiratory activities ofPhotobacterium phosphoreum. J Biochem 77:1147–1155

    PubMed  Google Scholar 

  27. Weston JA, Knowles CJ (1973) A soluble CO binding c-type cytochrome from the marine bacteriumbeneckea natriegens. Biochim Biophys Acta 305:11–18

    PubMed  Google Scholar 

  28. Wood PM (1984) Bacterial proteins with CO binding b-or c-type haem functions and absorption spectroscopy. Biochim Biophys Acta 768:293–320

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guerrero, M.A., Makemson, J.C. The cytochromes of luminous bacteria and their coupling to bioluminescence. Current Microbiology 18, 67–73 (1989). https://doi.org/10.1007/BF01568834

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01568834

Keywords

Navigation