Skip to main content
Log in

Mechanism of nitrite oxidation and oxidoreductase systems inNitrobacter agilis

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Chemiosmotic coupling mechanisms operate in the electron transfer reactions from: nitrite to O2, NO2 to NAD+, ascorbate to O2, NADH to O2, and NADH to NO3 . The enzyme systems catalyzing these reactions are named NO2 :O2 oxidoreductase, ATP-dependent NO2 :NAD+ oxidoreductase, ascorbate:O2 oxidoreductase, NADH:O2 oxidoreductase, and NADH:NO3 oxidoreductase, respectively. All of the oxidoreduction reactions are exergonic with the exception of the ATP-dependent NO2 :NAD+ oxidoreductase system, which involves reversed electron flow against the thermodynamic gradients. The mechanism for nitrite oxidation was found to be quite different from that of ascorbate oxidation; both systems were insensitive, however, to rotenone, amytal, antimycin A, and 2-n-heptyl 4-hydroxyquinolineN-oxide. These compounds, on the other hand, severely inhibited the electron transfer reactions catalyzed by NADH:O2 oxidoreductase, NADH:NO3 oxidoreductase, and the ATP-dependent NO2 :NAD+ oxidoreductase, indicating a common pathway of electron transport in these oxidoreductase systems. Cyanide inhibited all systems except the NADH:NO3 oxidoredctase. The uncoupler carbonyl cyanide-m-chlorophenyl hydrazone strongly inhibited NO2 :O2 oxidoreductase and ATP-dependent NO2 :NAD+ oxidoreductase, which indicates the involvement of energy-linked reactions in both systems; the uncoupler caused a marked stimulation of the NADH:O2 oxidoreductase and NADH:NO3 oxidoreductase without affecting the ascorbate:O2 oxidoreductase activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Aleem, M. I. H. 1965. Path of carbon and assimilatory power in chemosynthetic bacteria. I.Nitrobacter agilis. Biochemica et Biophysica Acta107:14–28.

    Google Scholar 

  2. Aleem, M. I. H. 1967. Energy conversions in the chemoautotrophNitrobacter agilis. Bacteriological Proceedings67:112.

    Google Scholar 

  3. Aleem, M. I. H. 1968. Mechanism of oxidative phosphorylation in chemoautotrophNitrobacter agilis. Biochimica et Biophysica Acta162:338–347.

    Google Scholar 

  4. Aleem, M. I. H., Hoch, G. E., Varner, J. E. 1965. Water as the source of oxidizing and reducing power in bacterial chemosynthesis. Proceedings of the National Academy of Sciences of the United States of America54:869–873.

    Google Scholar 

  5. Aleem, M. I. H., Lees, H., Nicholas, D. J. D. 1963. Adenosine triphosphate-dependent reduction of nicotinamide adenine dinucleotide by ferro-cytochromec in chemoautotrophic bacteria. Nature200:759–776.

    Google Scholar 

  6. Aleem, M. I. H., Nason, A. 1959. Nitrite oxidase, a particulate cytochrome electron transport system fromNitrobacter. Biochemical and Biophysical Research Communications1:323–327.

    Google Scholar 

  7. Aleem, M. I. H., Nason, A. 1960. Phosphorylation coupled to nitrite oxidation by particles from the chemoautotrophNitrobacter agilis. Proceedings of the National Academy of Sciences of the United States of America46:763–769.

    Google Scholar 

  8. Butt, W. D., Lees, H. 1958. Cytochromes ofNitrobacter. Nature182:732–733.

    Google Scholar 

  9. Cobley, J. G. 1973. The enigma of energy conservation inNitrobacter. Ph.D. thesis, University of Bristol, England.

    Google Scholar 

  10. Cobley, J. G. 1976. Reduction of cytochromes in electron transport particles fromNitrobacter winogradskyi. Biochemical Journal156:493–499.

    Google Scholar 

  11. Haddock, B. A., Jones, C. W. 1977. Bacterial respiration. Bacteriological Reviews41:47–99.

    Google Scholar 

  12. Ingledew, W. J., Cobley, J. G., Chappell, J. B. 1974. Cytochromes of theNitrobacter respiratory chain. Biochemical Society Transactions2:149–151.

    Google Scholar 

  13. John, P., Whatley, F. R. 1977. The bioenergetics ofParacoccus denitrificans. Biochemica et Biophysica Acta463; 129–153.

    Google Scholar 

  14. Kiesow, L. 1964. On the assimilation of energy from inorganic source in autotrophic forms of life. Proceedings of the National Academy of Sciences of the United States of America52:980–988.

    Google Scholar 

  15. Kiesow, L. 1967. Energy-linked reactions in chemoautotrophic organisms. Current Topics in Bioenergetics2:195–233.

    Google Scholar 

  16. Latimer, W. M. 1952. Oxidation potentials, 2nd ed., p. 393. New York: Prentice-Hall.

    Google Scholar 

  17. Lees, H., Simpson, J. R. 1957. The biochemistry of nitrifying organisms. 5. Nitrite oxidation byNitrobacter. Biochemical Journal65:297–305.

    Google Scholar 

  18. Sewell, D. L., Aleem, M. I. H. 1969. Generation of reducing power in chemosynthesis. V. The mechanism of pyridine nucleotide reduction in the chemoautotrophNitrobacter agilis. Biochimica et Biophysica Acta172:467–475.

    Google Scholar 

  19. Sewell, D. L., Allem, M. I. H. 1979. NADH-linked oxidative phosphorylation inNitrobacter agilis. Current Microbiology2:35–37.

    Google Scholar 

  20. Sewell, D. L., Aleem, M. I. H., Wilson, D. F. 1972. The oxidation-reduction potentials and rates of oxidation of the cytochromes ofNitrobacter agilis. Archives of Biochemistry and Biophysics153:312–319.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hussain Allem, M.I., Sewell, D.L. Mechanism of nitrite oxidation and oxidoreductase systems inNitrobacter agilis . Current Microbiology 5, 267–272 (1981). https://doi.org/10.1007/BF01567916

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01567916

Keywords

Navigation